In order to discuss the localization application technology of cotton seedling using substrate, the author used cotton seed hulls after the production of edible fungi residue, river sand and peat in different proporti...In order to discuss the localization application technology of cotton seedling using substrate, the author used cotton seed hulls after the production of edible fungi residue, river sand and peat in different proportion formula using in field and laboratory cotton seedling test. The results showed that: dry mass per plant and leaf area per plant of formula 3 were higher than Jiangxi cotton seedling nurs- ery substrate.the higher proportion were 48.4% and 73.5%; the rate of forming plantlets, survival rate of transplant and the unginned cotton yield had no obvious difference with the other matrix seedling and transplanting; nursery substrate was returned using as fertilizer, reduced environment pollution, achieved comprehensive utilization and cyclic utilization. Cotton seed hulls after the production of edible fungi residue was a cotton seedling substrate material of saving work,reducing cost and protecting environment and would have a good application prospect.展开更多
Cu2+ adsorption from simulated aqueous solution was investigated using a modified spent shiitake substrate (MSSS). The results showed that the MSSS has a high adsorption efficiency and removal performance. The Cu2+rem...Cu2+ adsorption from simulated aqueous solution was investigated using a modified spent shiitake substrate (MSSS). The results showed that the MSSS has a high adsorption efficiency and removal performance. The Cu2+removal rate of the MSSS reached above 95%. Compared with spent shiitake substrate (SSS), the specific surface area, electronegativity and surface functional groups of the MSSS were all improved, resulting in a high adsorption capacity. The Cu2+ adsorption of MSSS reached equilibrium after 0.75 h and was an exothermic reaction. The SEM and EDS analyses of the MSSS before and after Cu2+ adsorption showed that the pores on the surface of the MSSS were occupied after adsorption and the Cu content increased but the Na content decreased.展开更多
A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films...A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.展开更多
This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvant...This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvantages of traditional human inspection. Firstly, training the normal fabric to acquire its characteristics and then using the BP neural network to tell the normal fabric apart from the one with defects. Secondly, doing the two-dimeusional discrete wavelet transformation based on the image of the defects, then wiping off the proper characteristics of the fabric, and identifying the defects utilizing the trained BP neural network. It is proved that this method is of high speed and accuracy. It comes up to the requirement of automatic cloth inspection.展开更多
Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- geni...Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- genie acids that are generated in the sewer is essential in controlling the corrosion of concrete pipes and protective coatings. The role of succession of micro-organisms growth in the corrosion of concrete and protective coatings was evaluated in this study. Examination of various sewer pipe materials exhibiting various extents of degradation, including concrete, cement based and epoxy based coating revealed the presence of both organic and biogenic sulphuric acids. This reflects the activity of fungi and the thiobacilli strains. Organism growth and metabolism were strongly related to the substrate pH. Fungi were found to grow and metabolise organic acids at pH from 2.0-8.0. Whilst the thiobacilli strains grew and generated sulohuric acids at oH below 3.0. The successive growth of the organisms provides an impgrtant bearing in deyeloping improved strateegies.to better manage sewers.展开更多
The influence of Al addition on the microstructure of Cu-B alloys and Cu-ZrB2 composites was investigated using scanning electron microscopy, X-ray diffraction and first-principles calculation. The results show that t...The influence of Al addition on the microstructure of Cu-B alloys and Cu-ZrB2 composites was investigated using scanning electron microscopy, X-ray diffraction and first-principles calculation. The results show that the eutectic B in Cu-B alloys can be modified by Al from coarse needles to fine fibrous structure and primary B will form in hypoeutectic Cu-B alloys. As for Cu-ZrB2 composites, Al can significantly refine and modify the morphology of ZrB2 as well as improve its distribution, which should be due to its selective adsorption on ZrB2 surfaces. The first-principles calculation results indicate that Al is preferentially adsobed on ZrB2■, then on ZrB2■, and finally on ZrB2(0001). As a result, smaller sized ZrB2 with a polyhedron-like, even nearly sphere-like morphology, can form. Due to Al addition, the hardness of Cu-ZrB2 composites is greatly enhanced, but the electrical conductivity of the composites is seriously reduced.展开更多
基金Supported by National Cotton Industry Technology System(CARS-18-36)National Key Project of Transgenosis(2011ZX08005-001)+1 种基金National 863 Project(2011AA10A10)National Science & Technology Support Program(2011BAD35B05-2)~~
文摘In order to discuss the localization application technology of cotton seedling using substrate, the author used cotton seed hulls after the production of edible fungi residue, river sand and peat in different proportion formula using in field and laboratory cotton seedling test. The results showed that: dry mass per plant and leaf area per plant of formula 3 were higher than Jiangxi cotton seedling nurs- ery substrate.the higher proportion were 48.4% and 73.5%; the rate of forming plantlets, survival rate of transplant and the unginned cotton yield had no obvious difference with the other matrix seedling and transplanting; nursery substrate was returned using as fertilizer, reduced environment pollution, achieved comprehensive utilization and cyclic utilization. Cotton seed hulls after the production of edible fungi residue was a cotton seedling substrate material of saving work,reducing cost and protecting environment and would have a good application prospect.
基金Project(51204011)supported by the National Natural Science Foundation of ChinaProject(20121000803)supported by the Foundation of the Advisor of Beijing Excellent Doctoral Dissertation of ChinaProject(2013T60063)supported by the China Postdoctoral Science Foundation
文摘Cu2+ adsorption from simulated aqueous solution was investigated using a modified spent shiitake substrate (MSSS). The results showed that the MSSS has a high adsorption efficiency and removal performance. The Cu2+removal rate of the MSSS reached above 95%. Compared with spent shiitake substrate (SSS), the specific surface area, electronegativity and surface functional groups of the MSSS were all improved, resulting in a high adsorption capacity. The Cu2+ adsorption of MSSS reached equilibrium after 0.75 h and was an exothermic reaction. The SEM and EDS analyses of the MSSS before and after Cu2+ adsorption showed that the pores on the surface of the MSSS were occupied after adsorption and the Cu content increased but the Na content decreased.
文摘A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.
文摘This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvantages of traditional human inspection. Firstly, training the normal fabric to acquire its characteristics and then using the BP neural network to tell the normal fabric apart from the one with defects. Secondly, doing the two-dimeusional discrete wavelet transformation based on the image of the defects, then wiping off the proper characteristics of the fabric, and identifying the defects utilizing the trained BP neural network. It is proved that this method is of high speed and accuracy. It comes up to the requirement of automatic cloth inspection.
文摘Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- genie acids that are generated in the sewer is essential in controlling the corrosion of concrete pipes and protective coatings. The role of succession of micro-organisms growth in the corrosion of concrete and protective coatings was evaluated in this study. Examination of various sewer pipe materials exhibiting various extents of degradation, including concrete, cement based and epoxy based coating revealed the presence of both organic and biogenic sulphuric acids. This reflects the activity of fungi and the thiobacilli strains. Organism growth and metabolism were strongly related to the substrate pH. Fungi were found to grow and metabolise organic acids at pH from 2.0-8.0. Whilst the thiobacilli strains grew and generated sulohuric acids at oH below 3.0. The successive growth of the organisms provides an impgrtant bearing in deyeloping improved strateegies.to better manage sewers.
基金Project(51774212)supported by the National Natural Science Foundation of ChinaProjects(E2019502060,E2019502057)supported by the Natural Science Foundation of Hebei Province,China。
文摘The influence of Al addition on the microstructure of Cu-B alloys and Cu-ZrB2 composites was investigated using scanning electron microscopy, X-ray diffraction and first-principles calculation. The results show that the eutectic B in Cu-B alloys can be modified by Al from coarse needles to fine fibrous structure and primary B will form in hypoeutectic Cu-B alloys. As for Cu-ZrB2 composites, Al can significantly refine and modify the morphology of ZrB2 as well as improve its distribution, which should be due to its selective adsorption on ZrB2 surfaces. The first-principles calculation results indicate that Al is preferentially adsobed on ZrB2■, then on ZrB2■, and finally on ZrB2(0001). As a result, smaller sized ZrB2 with a polyhedron-like, even nearly sphere-like morphology, can form. Due to Al addition, the hardness of Cu-ZrB2 composites is greatly enhanced, but the electrical conductivity of the composites is seriously reduced.