期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
基于堆叠式降噪自动编码器和深度神经网络的风电调频逐步惯性智能控制 被引量:1
1
作者 王亚伦 周涛 +2 位作者 陈中 王毅 权浩 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第11期1477-1491,共15页
风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的... 风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的弊端,难以满足不同场景下快速提供最优控制效果的需求.为实现负荷扰动事件下风电调频的最优逐步惯性快速控制,引入深度学习算法,提出一种基于堆叠式降噪自动编码器(SDAE)和深度神经网络(DNN)的风电调频逐步惯性智能控制方法.首先,使用麻雀搜索算法获得最优参数,使用SDAE高效提取数据特征;随后,基于DNN对数据特征进行学习,并引入加速自适应矩估计优化网络参数,提升网络全局最优参数;最后,应用SDAE-DNN联合方法实现扰动事件后风电调频的逐步惯性在线控制.在IEEE 30节点测试系统中分别对单台风力机和风电场进行仿真分析,与传统方法、浅层反向传播神经网络及原始DNN所得结果对比发现,所提网络结构具有更优的预测精度和泛化能力,该方法能够实现良好的逐步惯性调频效果. 展开更多
关键词 逐步惯性控制 二次频率跌落 麻雀搜索算法 堆叠降噪自动编码器 深度神经网络
下载PDF
基于多特征融合自动编码器的增量式入侵检测 被引量:2
2
作者 张碧洪 夏海霞 +1 位作者 张宇 高志刚 《计算机系统应用》 2023年第6期42-50,共9页
针对增量式入侵检测算法由于对旧知识产生灾难性遗忘而导致对旧类别数据分类准确率不高的问题,本文提出了一种基于非对称式多特征融合自动编码器(asymmetric multi-feature fusion auto-encoder, AMAE)和全连接分类神经网络(classificat... 针对增量式入侵检测算法由于对旧知识产生灾难性遗忘而导致对旧类别数据分类准确率不高的问题,本文提出了一种基于非对称式多特征融合自动编码器(asymmetric multi-feature fusion auto-encoder, AMAE)和全连接分类神经网络(classification deep neural network, C-DNN)的增量式入侵检测算法(ImFace).在增量学习阶段, ImFace会为每一批新的数据集训练一个AMAE模型和C-DNN模型.同时,本文通过使用变分自动编码器(variational auto-encoder, VAE)对数据进行过采样的方式来改善由于数据集不平衡而导致C-DNN对某些类别数据的检测能力不足的问题.在检测阶段, ImFace将输入数据经过所有AMAE和C-DNN,然后将AMAE的结果作为置信度来选择某一个C-DNN的输出结果作为最终结果.本文使用CICIDS2017数据集来检验ImFace算法的有效性.实验结果表明, ImFace算法不仅能够保留对旧类别的分类能力,同时对新类别的数据也有很高的检测准确率. 展开更多
关键词 入侵检测 非对称多特征融合自动编码器 灾难性遗忘 增量学习 变分自动编码器 深度学习 目标检测
下载PDF
基于堆栈式自动编码器的加密流量识别方法 被引量:17
3
作者 王攀 陈雪娇 《计算机工程》 CAS CSCD 北大核心 2018年第11期140-147,153,共9页
基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学... 基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学习,实现对加密应用流量的准确识别。考虑到样本数据集的类别不平衡性对分类精度的影响,采用SMOTE过抽样方法对不平衡数据集进行处理。实验结果表明,该方法各项性能指标均优于MLP加密流量识别方法,识别精确度和召回率以及F1-Score均可达到99%。 展开更多
关键词 加密流量识别 深度学习 堆栈自动编码器 流量分类 多层感知机 卷积神经网络
下载PDF
基于堆栈式稀疏自编码器的高光谱影像分类 被引量:24
4
作者 戴晓爱 郭守恒 +2 位作者 任淯 杨晓霞 刘汉湖 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第3期382-386,共5页
为挖掘高光谱影像数据的内在光谱特征,该文基于深度学习理论,引用堆栈式稀疏自编码器构建原始数据的深层特征表达。首先通过稀疏自编码器,得到原始数据的稀疏特征表达。其次通过逐层学习稀疏自编码器构建深度神经网,输出原始数据的深度... 为挖掘高光谱影像数据的内在光谱特征,该文基于深度学习理论,引用堆栈式稀疏自编码器构建原始数据的深层特征表达。首先通过稀疏自编码器,得到原始数据的稀疏特征表达。其次通过逐层学习稀疏自编码器构建深度神经网,输出原始数据的深度特征。最后将其连接到支持向量机分类器,完成模型的精调。实验结果分析表明:基于堆栈式稀疏自编码器的最优分类模型,总体精度可达87.82%,优于实验中的其他方法,证明了深度学习方法在高光谱影像处理中具有良好的分类性能。 展开更多
关键词 深度神经网 特征提取 高光谱影像分类 堆栈稀疏自编码器 支持向量机
下载PDF
基于栈式降噪稀疏自动编码器的雷达目标识别方法 被引量:12
5
作者 赵飞翔 刘永祥 霍凯 《雷达学报(中英文)》 CSCD 2017年第2期149-156,共8页
雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响... 雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响,该文提出一种基于栈式降噪稀疏自动编码器的雷达目标识别方法,通过设置不同隐藏层数和迭代次数,从雷达数据中直接高效地提取识别所需的各层次特征。暗室仿真数据实验结果验证了该方法较K近邻分类方法及传统栈式自编码器有更好的识别效果。 展开更多
关键词 目标识别 深度学习 降噪稀疏自动编码器
下载PDF
基于改进堆栈降噪自动编码器的预想事故频率指标评估方法研究 被引量:31
6
作者 赵荣臻 文云峰 +4 位作者 叶希 唐权 李文沅 陈云辉 瞿小斌 《中国电机工程学报》 EI CSCD 北大核心 2019年第14期4081-4092,共12页
可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多... 可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。 展开更多
关键词 一次调频 频率指标 深度学习 随机森林 改进堆栈降噪自动编码器 DROPOUT 均方根反向传播优化
下载PDF
基于栈式去噪自动编码器的边际Fisher分析算法 被引量:3
7
作者 颜丹 蒋加伏 《计算机工程与应用》 CSCD 北大核心 2017年第5期134-139,共6页
特征学习是模式识别领域的关键问题。基于自动编码器的深度神经网络通过无监督预训练与有监督微调能够有效地提取数据中关键信息,形成特征。提出一种基于栈式去噪自编码器的边际Fisher分析算法,该算法将边际Fisher分析运用于有监督微调... 特征学习是模式识别领域的关键问题。基于自动编码器的深度神经网络通过无监督预训练与有监督微调能够有效地提取数据中关键信息,形成特征。提出一种基于栈式去噪自编码器的边际Fisher分析算法,该算法将边际Fisher分析运用于有监督微调阶段,进一步提升算法的特征学习能力。实验结果表明,该算法与标准的栈式去噪自编码器和基于受限玻尔兹曼机的深度信念网相比,具有更好的识别效果。 展开更多
关键词 特征学习 深度学习 人工神经网络 去噪自动编码器 边际Fisher分析
下载PDF
基于LBP和栈式自动编码器的人脸识别算法研究 被引量:7
8
作者 易焱 蒋加伏 《计算机工程与应用》 CSCD 北大核心 2018年第2期163-167,245,共6页
LBP算法对光照敏感且能有效地提取图像的纹理结构特征。提出一种基于局部二值模式(Local Binary Pattern,LBP)和栈式自动编码器(Stacked Autoencoders,SAE)的人脸识别算法。用统一模式LBP算子提取分块后的人脸图像的直方图,按顺序连接... LBP算法对光照敏感且能有效地提取图像的纹理结构特征。提出一种基于局部二值模式(Local Binary Pattern,LBP)和栈式自动编码器(Stacked Autoencoders,SAE)的人脸识别算法。用统一模式LBP算子提取分块后的人脸图像的直方图,按顺序连接形成整幅图像的LBP特征,并将其作为栈式自动编码器的输入,完成进一步的特征提取,实现人脸图像的识别与分类。在Extended Yale B等数据库上的实验结果表明,该算法与传统的人脸识别算法和标准的栈式自动编码器相比,对光照变化有更强的鲁棒性,具有更好的识别效果。 展开更多
关键词 人脸识别 深度学习 自动编码器 局部二值模
下载PDF
基于堆栈降噪自动编码器的桥梁损伤识别方法 被引量:7
9
作者 谢祥辉 单德山 周筱航 《铁道建筑》 北大核心 2018年第5期1-5,共5页
基于深度学习理论,针对现有桥梁损伤模式识别法的不足,利用多个降噪自动编码器进行损伤特征的提取与组合,应用Softmax方法判断损伤模式,提出了基于堆栈降噪自动编码器的桥梁损伤识别方法。为了验证所提方法的准确性,以连续梁桥为例,使... 基于深度学习理论,针对现有桥梁损伤模式识别法的不足,利用多个降噪自动编码器进行损伤特征的提取与组合,应用Softmax方法判断损伤模式,提出了基于堆栈降噪自动编码器的桥梁损伤识别方法。为了验证所提方法的准确性,以连续梁桥为例,使用所提方法及现有BP神经网络法进行损伤位置识别,对比了2种方法的识别精度和抗噪性能。研究结果表明:所提方法能准确识别损伤位置,相对于现有BP神经网络法具有更强的损伤识别能力、更高的识别精度及较强的抗噪能力。 展开更多
关键词 公路桥梁 损伤识别 深度学习 堆栈降噪自动编码器 连续梁桥
下载PDF
基于栈式降噪自动编码器的建筑工程施工成本预测 被引量:11
10
作者 刘必君 叶雨辰 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期922-928,共7页
以高层建筑工程项目为例,对建筑工程施工成本影响因素进行可靠地识别和合理量化。基于深度学习下的栈式降噪自动编码器理论,结合神经网络,构建非线性工程项目的施工成本预测模型。通过实际案例在Matlab平台上进行仿真预测,实证了该方法... 以高层建筑工程项目为例,对建筑工程施工成本影响因素进行可靠地识别和合理量化。基于深度学习下的栈式降噪自动编码器理论,结合神经网络,构建非线性工程项目的施工成本预测模型。通过实际案例在Matlab平台上进行仿真预测,实证了该方法在预测建筑工程施工成本上的可靠性和精确性。 展开更多
关键词 建筑工程 施工成本 深度学习 降噪自动编码器 预测
下载PDF
基于深度学习的概率能量流快速计算方法 被引量:41
11
作者 余娟 杨燕 +5 位作者 杨知方 向明旭 谢松 周平 任鹏凌 张昱 《中国电机工程学报》 EI CSCD 北大核心 2019年第1期22-30,共9页
考虑新能源日益增长的不确定性,概率能量流在电–气综合能源系统分析中起到关键性作用。概率能量流计算需要求解大量高维非线性方程组。高计算代价和求解时间已成为概率能量流实际工程应用的瓶颈所在。为此,该文提出了利用深度神经网络... 考虑新能源日益增长的不确定性,概率能量流在电–气综合能源系统分析中起到关键性作用。概率能量流计算需要求解大量高维非线性方程组。高计算代价和求解时间已成为概率能量流实际工程应用的瓶颈所在。为此,该文提出了利用深度神经网络求解该问题的新方法。该方法借助堆栈降噪自动编码器(stacked denoising auto-encoders,SDAE)的深层堆栈结构以及编码解码过程,建立了基于SDAE的能量流模型,可有效挖掘非线性能量流方程的高阶特征。结合能量流输入输出性质不同、变化范围不一等数值特点,在SDAE模型中引入了修正线性单元(rectifiedlinearunit,ReLU)激活函数与离差标准化方法,可有效提高训练精度与速度。结合蒙特卡洛法抽样出待解样本,使用训练后的SDAE能量流模型,通过数据映射得到抽样样本的能量流结果,在不增加硬件成本的前提下求解概率能量流,求解时间和精度符合在线应用要求。最后,在IEEE14-NGS10电–气综合能源系统中验证了所提方法的有效性。 展开更多
关键词 概率能量流 深度神经网络 堆栈降噪自动编码器 蒙特卡洛模拟法
下载PDF
基于深度学习理论的发动机气门机构故障识别 被引量:1
12
作者 周亦人 邱小林 郭志强 《制造业自动化》 CSCD 2017年第11期89-93,共5页
为了正确诊断和识别发动机气门机构故障,提出一种基于经验模态分解和堆栈式稀疏自编码器深度学习模型的发动机气门机构故障识别算法。以发动机缸盖振动信号为信号源,对振动信号做经验模态分解,提取各个本征模态分量的时域和频域特征构... 为了正确诊断和识别发动机气门机构故障,提出一种基于经验模态分解和堆栈式稀疏自编码器深度学习模型的发动机气门机构故障识别算法。以发动机缸盖振动信号为信号源,对振动信号做经验模态分解,提取各个本征模态分量的时域和频域特征构成故障特征向量集,作为故障识别的样本变量。通过稀疏自编码非监督学习网络对输入向量进行特征学习,并将单层网络堆栈成深度网络,最后采用少量有标签数据对整个深度学习模型进行微调训练,建立气门机构故障识别模型。试验结果表明,EMD-SSAE混合深度学习模型能够有效的识别气门机构的故障状态,并且比EMD-SVM和EMD-BPNN模型获得更高的识别准确率。 展开更多
关键词 深度学习 堆栈稀疏自编码器 EMD 发动机气门机构 故障识别
下载PDF
基于深度强化学习的旋转机械故障诊断策略 被引量:8
13
作者 龙舰涵 《机械设计与制造》 北大核心 2021年第10期288-294,共7页
由于传统深度学习方法无法挖掘原始振动数据与旋转机械状态之间的非线性映射关系,提出了一种基于堆叠式自动编码器与深度Q网络相结合的深度强化学习旋转机械故障诊断方法。首先建立故障诊断“博弈”模型,该博弈模型可以为故障诊断代理... 由于传统深度学习方法无法挖掘原始振动数据与旋转机械状态之间的非线性映射关系,提出了一种基于堆叠式自动编码器与深度Q网络相结合的深度强化学习旋转机械故障诊断方法。首先建立故障诊断“博弈”模型,该博弈模型可以为故障诊断代理提供观察、行动和获得奖励的交互式环境。然后,堆叠式自动编码器采用完全连接模型进行逐级的内在特征学习从而构建了故障诊断代理,然后通过引入记忆回放和迭代更新策略以及奖励反馈机制,使得深度Q网络实现了原始振动信号与故障模式之间的非线性映射关系。最后通过实验证明了提出方法的有效性与可行性。 展开更多
关键词 故障诊断 旋转机械 深度强化学习 堆叠自动编码器 深度Q网络
下载PDF
基于SDAE深度学习框架的现代学徒制课程教学质量评价研究
14
作者 左国才 张珏 +2 位作者 苏秀芝 王海东 韩东初 《智能计算机与应用》 2020年第1期165-167,共3页
国家大力推行现代学徒制人才培养模式,取得了一定的成效,为了客观评价基于现代学徒制的课程教学质量,本文提出一种基于堆栈式去噪自编码器(SDAE)深度学习框架,应用于现代学徒制的课程教学质量分析,为现代学徒制课程教学质量评价提供客... 国家大力推行现代学徒制人才培养模式,取得了一定的成效,为了客观评价基于现代学徒制的课程教学质量,本文提出一种基于堆栈式去噪自编码器(SDAE)深度学习框架,应用于现代学徒制的课程教学质量分析,为现代学徒制课程教学质量评价提供客观评价的依据。实验证明,使用堆栈式去噪自编码器深度学习框架提取人脸深度特征,检测人脸与人的姿态,完成人脸与姿态识别,分析判断教师授课时的状态以及学生上课时的专注度,为教学实施过程提供客观量化的分析评测结果,为现代学徒制课程教学评价提供依据,督促学生认真听课,方便教师及时调整课程教学设计与课堂教学实施方案,切实提高课程教学质量。 展开更多
关键词 堆栈去噪自编码器 深度学习 教学质量
下载PDF
基于SDAE深度学习的多目标检测与跟踪研究
15
作者 左国才 苏秀芝 +2 位作者 陈明丽 张珏 吴小平 《智能计算机与应用》 2020年第7期203-205,共3页
运动目标的检测与跟踪是智能交通、智能监控等领域的重要组成部分,尤其是行人、车辆的检测与跟踪,对于行人行车安全、流量监控等都有着重要的意义。由于复杂交通场景中多目标检测与跟踪的难度较高,人工设计的目标特征无法满足复杂的多... 运动目标的检测与跟踪是智能交通、智能监控等领域的重要组成部分,尤其是行人、车辆的检测与跟踪,对于行人行车安全、流量监控等都有着重要的意义。由于复杂交通场景中多目标检测与跟踪的难度较高,人工设计的目标特征无法满足复杂的多目标检测与跟踪。因此,本文提出一种基于堆栈式去噪自编码器深度学习框架的多目标检测与跟踪算法,利用海量的图片数据集训练深度学习模型,提取目标深度特征,用于多目标检测与跟踪。实验结果表明,基于堆栈式去噪自编码器深度学习框架的多目标检测与跟踪算法,提高了多目标检测的准确性,实现了更加鲁棒的多目标跟踪效果。 展开更多
关键词 深度学习 堆栈去噪自编码器 多目标检测与跟踪
下载PDF
基于深度流形表示学习的工业过程多故障识别方法
16
作者 宫亮 马宗杰 杨煜普 《计算机与数字工程》 2020年第10期2425-2429,共5页
深度流形表示学习对于自动学习系统的本质特征有着重要的作用。论文提出了一种基于深度流形表示学习的多故障识别方法。所提的多故障识别方法可以分为三个阶段:第一,将故障识别问题转化为分类问题,定义正常和故障状态,以及预处理原始数... 深度流形表示学习对于自动学习系统的本质特征有着重要的作用。论文提出了一种基于深度流形表示学习的多故障识别方法。所提的多故障识别方法可以分为三个阶段:第一,将故障识别问题转化为分类问题,定义正常和故障状态,以及预处理原始数据;第二,利用深度流形表示学习对深度神经网络进行预训练;第三,利用故障标签数据全局训练深度网络。所提出的方法被应用于由一种典型的工业系统生成的两个不同尺寸以及多个故障类型的数据集。测试结果表明,所提方法能够准确预测故障类型,优于其他两种分类方法。此外,由于所提出的方法仅需要数据,因此很容易迁移到其他的工业系统。 展开更多
关键词 深度流形表示学习 堆栈去噪自动编码器 工业过程多故障识别
下载PDF
基于深度学习的蛋白质亚细胞定位预测 被引量:3
17
作者 王艺皓 丁洪伟 +2 位作者 李波 保利勇 张颖婕 《计算机应用》 CSCD 北大核心 2020年第11期3393-3399,共7页
针对传统机器学习算法中仍需手工操作表示特征的问题,提出了一种基于堆栈式降噪自编码器(SDAE)深度网络的蛋白质亚细胞定位算法。首先,分别利用改进型伪氨基酸组成法(PseAAC)、伪位置特异性得分矩阵法(PsePSSM)和三联体编码法(CT)对蛋... 针对传统机器学习算法中仍需手工操作表示特征的问题,提出了一种基于堆栈式降噪自编码器(SDAE)深度网络的蛋白质亚细胞定位算法。首先,分别利用改进型伪氨基酸组成法(PseAAC)、伪位置特异性得分矩阵法(PsePSSM)和三联体编码法(CT)对蛋白质序列进行特征提取,并将这三种方法得到的特征向量进行融合,以得到一个全新的蛋白质序列特征表达模型;接着,将融合后的特征向量输入到SDAE深度网络里自动学习更有效的特征表示;然后选用Softmax回归分类器进行亚细胞的分类预测,并采用留一法在Viral proteins和Plant proteins两个数据集上进行交叉验证;最后,将所提算法的结果与mGOASVM、HybridGO-Loc等多种现有算法的结果进行比较。实验结果表明,所提算法在Viral proteins数据集上取得了98.24%的准确率,与mGOASVM算法相比提高了9.35个百分点;同时所提算法在Plant proteins数据集上取得了97.63%的准确率,比mGOASVM算法和HybridGO-Loc算法分别提高了10.21个百分点和4.07个百分点。综上说明所提算法可以有效提高蛋白质亚细胞定位预测的准确性。 展开更多
关键词 深度学习 特征融合 蛋白质定位 堆栈降噪自编码器 留一法
下载PDF
深度学习在遥感影像分类中的研究进展 被引量:38
18
作者 付伟锋 邹维宝 《计算机应用研究》 CSCD 北大核心 2018年第12期3521-3525,共5页
随着遥感技术和计算机技术的不断发展,传统的遥感影像分类方法已不能满足如今遥感影像分类的需求。近年来,随着深度学习方面研究成果的不断涌现,它给遥感影像的分类提供了一种新的思路和方法。首先概述了遥感影像分类的发展和深度学习... 随着遥感技术和计算机技术的不断发展,传统的遥感影像分类方法已不能满足如今遥感影像分类的需求。近年来,随着深度学习方面研究成果的不断涌现,它给遥感影像的分类提供了一种新的思路和方法。首先概述了遥感影像分类的发展和深度学习的基本概念,然后重点介绍了基于深度置信网、卷积神经网络和栈式自动编码器等深度学习模型在遥感影像分类中的研究进展,最后提出了目前研究中存在的问题及遥感影像分类的发展趋势。 展开更多
关键词 深度置信网 卷积神经网络 自动编码器 遥感影像分类 深度学习
下载PDF
基于深度学习的配对交易策略 被引量:1
19
作者 叶映彤 蔡熙腾 +1 位作者 李雅妮 蔡向高 《科技创新导报》 2017年第6期247-252,共6页
随着我国金融创新的推进,量化交易逐渐在我国证券市场中发芽成长。量化交易领域中传统的配对交易策略,都假设股价之间满足某种特定的关系,因而存在着局限性。运用深度学习技术,可以避免在配对交易中引入前提额外假设,而是将挖掘规律的... 随着我国金融创新的推进,量化交易逐渐在我国证券市场中发芽成长。量化交易领域中传统的配对交易策略,都假设股价之间满足某种特定的关系,因而存在着局限性。运用深度学习技术,可以避免在配对交易中引入前提额外假设,而是将挖掘规律的任务交给计算机来完成。使用栈式自动编码器代替传统方法,挖掘股票价格相关性中蕴含的套利机会,能形成一套新的、有着独立逻辑的交易策略。实验表明,该策略在我国A股市场表现出稳定的盈利能力,在根据近两年A股市场数据的模拟测试中,日胜率为62.9%,信息比率为0.378。 展开更多
关键词 量化交易 配对交易 深度学习 自动编码器 A股市场
下载PDF
基于深度学习的网页分类算法研究 被引量:3
20
作者 陈芊希 范磊 《微型电脑应用》 2016年第2期25-28,共4页
网页分类可将信息准确筛选与呈现给用户,提高信息检索的准确率。深度学习是机器学习中一个全新的领域,其本质是一种多层的神经网络学习算法,通过逐层初始化的方法来达到极高的准确率,被多次使用在图像识别、语音识别、文本分类中。提出... 网页分类可将信息准确筛选与呈现给用户,提高信息检索的准确率。深度学习是机器学习中一个全新的领域,其本质是一种多层的神经网络学习算法,通过逐层初始化的方法来达到极高的准确率,被多次使用在图像识别、语音识别、文本分类中。提出了基于深度学习的网页分类算法,实验数据证明该方法可有效提高网页分类的准确率。 展开更多
关键词 网页分类 深度学习 自动编码器 TFIDF
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部