本文提出了一种基于变换函数与填充函数的模糊粒子群优化算法(Fuzzy partical swarm optimization based on filled function and transformation function,FPSO-TF).以基于不同隶属度函数的多回路模糊控制系统为基础,进一步结合变换函...本文提出了一种基于变换函数与填充函数的模糊粒子群优化算法(Fuzzy partical swarm optimization based on filled function and transformation function,FPSO-TF).以基于不同隶属度函数的多回路模糊控制系统为基础,进一步结合变换函数与填充函数,使该算法减少了陷入局部最优的可能,又可以跳出局部极小值点至更小的点,快速高效地搜索到全局最优解.最后采用基准函数对此算法进行测试,并与几种不同类型的改进算法进行对比分析,验证了此算法的有效性与优越性.展开更多
基金the National Natural Science Foundation of China(12071112,11471102)Basic Research Projects for Key Scientific Research Projects in Henan Province of China(20ZX001)。
文摘本文提出了一种基于变换函数与填充函数的模糊粒子群优化算法(Fuzzy partical swarm optimization based on filled function and transformation function,FPSO-TF).以基于不同隶属度函数的多回路模糊控制系统为基础,进一步结合变换函数与填充函数,使该算法减少了陷入局部最优的可能,又可以跳出局部极小值点至更小的点,快速高效地搜索到全局最优解.最后采用基准函数对此算法进行测试,并与几种不同类型的改进算法进行对比分析,验证了此算法的有效性与优越性.
基金The National Natural Science Foundation of China (10571137 and 10571116)the Great Natural Science Foundation of Henan University of Science and Technology (2005ZD006)