In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in...In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in different diameters and liquid heights has been realized using the shear stress transport(SST)turbulence model and the Gamma Theta transition(GTT)model.In the ANSYS CFX software,two models are used in conjunction with an automatic wall treatment which allows for a smooth shift from a wall function(WF)to a low turbulent-Re near wall formulation(LTRW).The results of the models coupled with LTRW are closer to the experimental results compared with the models with WF,indicating that LTRW is more appropriate for the prediction of boundary layer characteristics of orifice flow.Simulation results show that the flow conditions of orifices change with the variation of liquid height.With respect to the turbulence in orifice,the SST model coupled with LTRW is recommended.However,with respect to the transition to turbulence in orifice with an increase in liquid height,the predictions of GTT model coupled with LTRW are superior to those obtained using other models.展开更多
The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerica...The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario(floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity(100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.展开更多
基金the financial support from the National Basic Research Program of China(No.2009CB219905)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0936)the National Natural Science Foundation of China(No.21176172)
文摘In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in different diameters and liquid heights has been realized using the shear stress transport(SST)turbulence model and the Gamma Theta transition(GTT)model.In the ANSYS CFX software,two models are used in conjunction with an automatic wall treatment which allows for a smooth shift from a wall function(WF)to a low turbulent-Re near wall formulation(LTRW).The results of the models coupled with LTRW are closer to the experimental results compared with the models with WF,indicating that LTRW is more appropriate for the prediction of boundary layer characteristics of orifice flow.Simulation results show that the flow conditions of orifices change with the variation of liquid height.With respect to the turbulence in orifice,the SST model coupled with LTRW is recommended.However,with respect to the transition to turbulence in orifice with an increase in liquid height,the predictions of GTT model coupled with LTRW are superior to those obtained using other models.
基金Supported by the National Basic Research Program of China("973" Program,No.2013CB035906)Natural Science Foundation of Tianjin(No.JCYBJC19500)the Foundation of Innovative Research Groups of National Natural Science Foundation of China(No.51321065)
文摘The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario(floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity(100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.