The denitrifying sulfide removal(DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate species into di-nitrogen gas, elementa...The denitrifying sulfide removal(DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate species into di-nitrogen gas, elemental sulfur and carbon dioxide, respectively, at high loading rates. This study has determined that the reaction rate of sulfide oxidized into sulfur could be enhanced in the presence of 1,2-naphthoquinone-4-sulphonate(NQS). The presence of NQS mitigated the inhibition effects of sulfide species on denitrification. Furthermore, the reaction rates of nitrate and acetate to nitrogen gas and CO_2, respectively, were also promoted in the presence of NQS, thereby enhancing the performance of DSR granules. The advantages and disadvantages of applying the NQS-DSR process are discussed.展开更多
Since the introduction of"green tyres" in the early 90's, the use of silica as a reinforcing filler, along with a silane coupling agent, has spread and grown worldwide. The greatest advantage of using silica over c...Since the introduction of"green tyres" in the early 90's, the use of silica as a reinforcing filler, along with a silane coupling agent, has spread and grown worldwide. The greatest advantage of using silica over carbon black as reinforcing filler in a tyre tread compound is that a lower rolling resistance is achieved, while maintaining good wet traction. However, a previous study has shown that the wear resistance of a silica filled ENR (epoxidised natural rubber) compound was not as high as those of conventional OESBR (oil extended styrene butadiene rubber) and NR/BR compounds used in passenger car and truck tyre treads. In this work, with the aim of improving abrasion resistance, the effect of blending BR (butadiene rubber) into a silica filled ENR compound was studied. Blends with 0 to 30 phr BR were prepared in a Polylab Haake internal mixer. The rheological properties of the compounds were measured using a Mooney viscometer and oscillating-disc rheometer. The hardness, tensile strength and DIN abrasion resistance were also measured. The results showed that the ENR/silica compound properties such as tensile strength and hardness were as good as those of the conventional compounds. However, the most important finding was that abrasion resistance increased significantly with BR content, exceeding that of the conventional compound at BR: ENR ratios of greater than 20:80.展开更多
Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnI...Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.展开更多
Two kinds of rosin derivatives, (2-hydroxy-3-(methacryloyloxy)propyl 7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a- decahydrophenanthrene-1-carboxylate) (HMPIDDC) and (((7-isopropyl-1,4a-dimethyl-1,2,3,4...Two kinds of rosin derivatives, (2-hydroxy-3-(methacryloyloxy)propyl 7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a- decahydrophenanthrene-1-carboxylate) (HMPIDDC) and (((7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenan- thren-1-yl)methyl)azanediyl)bis(2-hydroxypropane-3,1-diyl)bis(2-methylacrylate) (IDOMAHM) were synthesized under mild and easy to implement conditions. The two derivatives were employed as the rigid monomers to copolymerize with acrylated epoxidized soybean oil (AESO), as so to improve the performance of the cured resins. The chemical structures of HMPIDDC and IDOMAHM were confirmed by nuclear magnetic resonance (NMR) and Fourier Transform Infrared (FT-IR) before copolymerization. The curing behaviors of pristine AESO, AESO/HMPIDDC blend, and AESO/IDOMAHM blend were monitored by differential scanning calorimetry (DSC). Moreover, the thermal and mechanical properties of the cured resins were evaluated by universal mechanical testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The results demonstrated that after the introduction of HMPIDDC and IDOMAHM, the glass transition temperature and mechanical properties of the copolymerized resin were significantly increased. In one word, HMPIDDC and IDOMAHM showed dramatic potential to be used as bio-based compounds to improve the properties of soybean-oil based thermosets.展开更多
基金supported bythe National Natural Science Foundation of China under Grant No. 21307160the Natural Science Foundation of Shandong Province under Grant No. ZR2013EEQ030
文摘The denitrifying sulfide removal(DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate species into di-nitrogen gas, elemental sulfur and carbon dioxide, respectively, at high loading rates. This study has determined that the reaction rate of sulfide oxidized into sulfur could be enhanced in the presence of 1,2-naphthoquinone-4-sulphonate(NQS). The presence of NQS mitigated the inhibition effects of sulfide species on denitrification. Furthermore, the reaction rates of nitrate and acetate to nitrogen gas and CO_2, respectively, were also promoted in the presence of NQS, thereby enhancing the performance of DSR granules. The advantages and disadvantages of applying the NQS-DSR process are discussed.
文摘Since the introduction of"green tyres" in the early 90's, the use of silica as a reinforcing filler, along with a silane coupling agent, has spread and grown worldwide. The greatest advantage of using silica over carbon black as reinforcing filler in a tyre tread compound is that a lower rolling resistance is achieved, while maintaining good wet traction. However, a previous study has shown that the wear resistance of a silica filled ENR (epoxidised natural rubber) compound was not as high as those of conventional OESBR (oil extended styrene butadiene rubber) and NR/BR compounds used in passenger car and truck tyre treads. In this work, with the aim of improving abrasion resistance, the effect of blending BR (butadiene rubber) into a silica filled ENR compound was studied. Blends with 0 to 30 phr BR were prepared in a Polylab Haake internal mixer. The rheological properties of the compounds were measured using a Mooney viscometer and oscillating-disc rheometer. The hardness, tensile strength and DIN abrasion resistance were also measured. The results showed that the ENR/silica compound properties such as tensile strength and hardness were as good as those of the conventional compounds. However, the most important finding was that abrasion resistance increased significantly with BR content, exceeding that of the conventional compound at BR: ENR ratios of greater than 20:80.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Nos. 51422206 and 51372159), 1000 Talents Plan for Young Researchers, "Shuangchuang" Program of Jiangsu Province, a Project Supported by Jiangsu Science and Technology Committee for Distinguished Young Scholars (No. BK20140009), the National Basic Research Program of China (973 Program) (No. 2015CB358600) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We also acknowledge Jiangsu Nata Opto- electronic Materials Co. Ltd. for providing high purity TDMAT precursor for deposition of TiO2 thin films.
文摘Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2012229)Natural Sciences Foundation of Ningbo City(Grant No.2014A610110)+1 种基金Research Project of Technology Application for Public Welfare of Zhejiang Province(Grant No.2014C31143)National Natural Science Foundation of China(Grant Nos.51373194,51203176)
文摘Two kinds of rosin derivatives, (2-hydroxy-3-(methacryloyloxy)propyl 7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a- decahydrophenanthrene-1-carboxylate) (HMPIDDC) and (((7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenan- thren-1-yl)methyl)azanediyl)bis(2-hydroxypropane-3,1-diyl)bis(2-methylacrylate) (IDOMAHM) were synthesized under mild and easy to implement conditions. The two derivatives were employed as the rigid monomers to copolymerize with acrylated epoxidized soybean oil (AESO), as so to improve the performance of the cured resins. The chemical structures of HMPIDDC and IDOMAHM were confirmed by nuclear magnetic resonance (NMR) and Fourier Transform Infrared (FT-IR) before copolymerization. The curing behaviors of pristine AESO, AESO/HMPIDDC blend, and AESO/IDOMAHM blend were monitored by differential scanning calorimetry (DSC). Moreover, the thermal and mechanical properties of the cured resins were evaluated by universal mechanical testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The results demonstrated that after the introduction of HMPIDDC and IDOMAHM, the glass transition temperature and mechanical properties of the copolymerized resin were significantly increased. In one word, HMPIDDC and IDOMAHM showed dramatic potential to be used as bio-based compounds to improve the properties of soybean-oil based thermosets.