实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群...实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。展开更多
为保证光伏系统在光照剧烈变化条件下仍可输出最大功率,提出一种自适应变步长电阻增量算法.该算法可根据外界环境的变化,通过步长转换函数自动将光伏系统工作区域划分为定步长区域和变步长区域:在定步长区域,基于短路电流和最大功率点...为保证光伏系统在光照剧烈变化条件下仍可输出最大功率,提出一种自适应变步长电阻增量算法.该算法可根据外界环境的变化,通过步长转换函数自动将光伏系统工作区域划分为定步长区域和变步长区域:在定步长区域,基于短路电流和最大功率点电流的近似线性关系,提出一种整定初始定步长的方法;在变步长区域,结合步长转换函数与输出功率的关系,确定变步长控制策略的速度因子,保证了算法的收敛性.搭建光伏系统Matlab/Simulink仿真模型和基于DSP(TMS320F28035)控制的5 k W光伏系统实验平台,仿真和实验结果表明,所提算法在光照剧烈变化条件下可将光伏系统动态响应速度提高73%,并使得稳态跟踪精度达到98.9%.展开更多
由于光伏电池的输出特性会随着环境变化而改变,因此,合理的最大功率点跟踪(maximum power point tracking, MPPT)技术是提高光伏发电系统效率的关键.但在定步长算法中,跟踪速度和稳态精度之间存在固有矛盾,而传统变步长算法在光照变化...由于光伏电池的输出特性会随着环境变化而改变,因此,合理的最大功率点跟踪(maximum power point tracking, MPPT)技术是提高光伏发电系统效率的关键.但在定步长算法中,跟踪速度和稳态精度之间存在固有矛盾,而传统变步长算法在光照变化下缺乏灵活性,起动速度慢,制约了MPPT的跟踪质量.针对此问题,提出一种优化的变步长电导增量法.该算法可根据工作点位置选取合理的跟踪比例系数,克服了传统变步长算法动态响应速度慢、精度不高的问题.在Matlab/Simulink下的仿真结果证实了该算法在变化的光照情况下的可行性.展开更多
文摘实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。
文摘为保证光伏系统在光照剧烈变化条件下仍可输出最大功率,提出一种自适应变步长电阻增量算法.该算法可根据外界环境的变化,通过步长转换函数自动将光伏系统工作区域划分为定步长区域和变步长区域:在定步长区域,基于短路电流和最大功率点电流的近似线性关系,提出一种整定初始定步长的方法;在变步长区域,结合步长转换函数与输出功率的关系,确定变步长控制策略的速度因子,保证了算法的收敛性.搭建光伏系统Matlab/Simulink仿真模型和基于DSP(TMS320F28035)控制的5 k W光伏系统实验平台,仿真和实验结果表明,所提算法在光照剧烈变化条件下可将光伏系统动态响应速度提高73%,并使得稳态跟踪精度达到98.9%.
文摘由于光伏电池的输出特性会随着环境变化而改变,因此,合理的最大功率点跟踪(maximum power point tracking, MPPT)技术是提高光伏发电系统效率的关键.但在定步长算法中,跟踪速度和稳态精度之间存在固有矛盾,而传统变步长算法在光照变化下缺乏灵活性,起动速度慢,制约了MPPT的跟踪质量.针对此问题,提出一种优化的变步长电导增量法.该算法可根据工作点位置选取合理的跟踪比例系数,克服了传统变步长算法动态响应速度慢、精度不高的问题.在Matlab/Simulink下的仿真结果证实了该算法在变化的光照情况下的可行性.