为了精准定位窃电行为,减小电力窃取给电力系统带来的经济损失,提出了一种基于熵权法Stacking(stacking based entropy,E_Stacking)集成学习的多分类窃电检测模型。首先基于用电量信息共线性的特点,使用方差膨胀因子(variance inflation...为了精准定位窃电行为,减小电力窃取给电力系统带来的经济损失,提出了一种基于熵权法Stacking(stacking based entropy,E_Stacking)集成学习的多分类窃电检测模型。首先基于用电量信息共线性的特点,使用方差膨胀因子(variance inflation factor,VIF)作为标准对数据降维,以降低数据复杂度。然后在模型训练时嵌入k折交叉验证,有效防止模型过拟合。该模型包含初级学习器和元学习器两层学习器,可以充分结合两层学习器的优点,将学习的互补特征和判别特征相结合,进一步提高检测性能。最后,使用爱尔兰数据集和部分加州大学欧文分校(University of California Irvine,UCI)数据集验证模型,结果优于目前几种常见的方法,证明该模型的有效性和稳定性。展开更多
在面向大数据问题的应用领域中,由于现实世界的多样性和复杂性,经常会遇到大规模的多类别数据挖掘问题,传统的多分类方法一方面存在着超平面不平衡更新的问题,另一方面学习效率较低,对于复杂的多类别数据无法进行高效分类。针对这个问题...在面向大数据问题的应用领域中,由于现实世界的多样性和复杂性,经常会遇到大规模的多类别数据挖掘问题,传统的多分类方法一方面存在着超平面不平衡更新的问题,另一方面学习效率较低,对于复杂的多类别数据无法进行高效分类。针对这个问题,本文提出了一种改进的动态主动多分类(Dynamical active multiple classification,DYA)方法,该方法通过将死锁、激活等概念引入到主动多分类过程,在主动多分类过程中随着分类器的不断更新,动态地控制样本是否参与主动学习的过程;同时,采用分位计数、轮换学习方式的主动多分类方法,使得多类别的分类器能够得到平衡的学习和更新。实验结果表明,本文提出的动态主动多分类方法有效提高了模型的学习效率和泛化性能。展开更多
文摘为了精准定位窃电行为,减小电力窃取给电力系统带来的经济损失,提出了一种基于熵权法Stacking(stacking based entropy,E_Stacking)集成学习的多分类窃电检测模型。首先基于用电量信息共线性的特点,使用方差膨胀因子(variance inflation factor,VIF)作为标准对数据降维,以降低数据复杂度。然后在模型训练时嵌入k折交叉验证,有效防止模型过拟合。该模型包含初级学习器和元学习器两层学习器,可以充分结合两层学习器的优点,将学习的互补特征和判别特征相结合,进一步提高检测性能。最后,使用爱尔兰数据集和部分加州大学欧文分校(University of California Irvine,UCI)数据集验证模型,结果优于目前几种常见的方法,证明该模型的有效性和稳定性。
文摘在面向大数据问题的应用领域中,由于现实世界的多样性和复杂性,经常会遇到大规模的多类别数据挖掘问题,传统的多分类方法一方面存在着超平面不平衡更新的问题,另一方面学习效率较低,对于复杂的多类别数据无法进行高效分类。针对这个问题,本文提出了一种改进的动态主动多分类(Dynamical active multiple classification,DYA)方法,该方法通过将死锁、激活等概念引入到主动多分类过程,在主动多分类过程中随着分类器的不断更新,动态地控制样本是否参与主动学习的过程;同时,采用分位计数、轮换学习方式的主动多分类方法,使得多类别的分类器能够得到平衡的学习和更新。实验结果表明,本文提出的动态主动多分类方法有效提高了模型的学习效率和泛化性能。