期刊文献+
共找到564篇文章
< 1 2 29 >
每页显示 20 50 100
基于多头注意力机制字词联合的中文命名实体识别
1
作者 王进 王猛旗 +2 位作者 张昕跃 孙开伟 朴昌浩 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第1期77-84,共8页
针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低... 针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低冗余词汇干扰.建立了多头注意力字词联合模型,包含字词匹配、多头注意力、融合等模块.与现有中文命名实体识别方法相比,本算法避免了设计复杂的序列模型,方便与现有基于字的中文命名实体识别模型结合.采用召回率、精确率以及F 1值作为评价指标,通过消融试验验证模型各个部分的效果.结果表明,本算法在MSRA和Weibo数据集上F 1值分别提升0.28、0.69,在Resume数据集上精确率提升0.07. 展开更多
关键词 中文命名实体识别 词汇冗余 词汇边界信息 字词联合 多头注意力机制 BIE词集
下载PDF
基于增强多头注意力机制的Optuna-BiGRU测井岩性识别
2
作者 王婷婷 王振豪 +1 位作者 李方 赵万春 《地球科学与环境学报》 CAS 北大核心 2024年第1期127-142,共16页
测井岩性识别是油气勘探开发中至关重要的内容。针对现有算法模型在处理测井曲线数据时,无法有效捕获曲线内部深层关联和深度方向关系、拟合能力较弱、难以准确提取关键特征、噪声干扰以及模型超参数调优过程复杂困难等问题,提出了一种... 测井岩性识别是油气勘探开发中至关重要的内容。针对现有算法模型在处理测井曲线数据时,无法有效捕获曲线内部深层关联和深度方向关系、拟合能力较弱、难以准确提取关键特征、噪声干扰以及模型超参数调优过程复杂困难等问题,提出了一种通过Optuna超参数优化双向门循环单元(Optuna-BiGRU)结合增强多头注意力机制(EMHA)的测井岩性识别模型——Optuna-BiGRU-EMHA模型。该模型引入残差机制和层归一化以改进多头注意力机制模块,并结合双向门循环单元(BiGRU)解决了处理测井数据时的问题,同时使用Optuna超参数优化框架和小波包自适应阈值方法分别解决了超参数调优和噪声干扰问题。首先通过交会图分析和敏感性箱线图分析选取自然伽马、深感应电阻率、中子-密度孔隙度、平均中子-密度孔隙度和岩性密度5个特征参数的测井数据,通过小波包自适应阈值方法对数据进行去噪,并将测井数据分割成数据块,然后利用Optuna框架优化BiGRU-EMHA模型超参数,最后通过实验对比K-近邻算法(KNN)、随机森林(RF)、极端梯度提升算法(XGBoost)、长短期记忆(LSTM)神经网络、BiGRU、双向长短期记忆(BiLSTM)神经网络、BiGRU-MHA、Optuna-BiGRU-EMHA等8种模型在测井岩性识别中的精度。结果表明:Optuna-BiGRU-EMHA模型识别准确率达到80%,相对于传统机器学习模型和深度学习模型,综合岩性识别准确率分别提高15.94%~23.14%和3.93%~15.94%,该模型为常规测井岩性识别提供了坚实的理论支持。 展开更多
关键词 岩性识别 深度学习 BiGRU 增强多头注意力机制 小波包自适应阈值 超参数优化
下载PDF
基于交互式多头注意力的机械故障诊断方法
3
作者 冯肖亮 赵广 《计算机应用与软件》 北大核心 2024年第11期108-116,152,共10页
针对旋转机械振动信号复杂且难以提取有效故障特征,多头注意力故障诊断方法计算复杂度高的情况,提出一种交互式多头注意力的机械故障诊断方法。通过对输入数据的特征图进行窗口分割,降低了注意力的计算复杂度。使用特征图滚动技术,在各... 针对旋转机械振动信号复杂且难以提取有效故障特征,多头注意力故障诊断方法计算复杂度高的情况,提出一种交互式多头注意力的机械故障诊断方法。通过对输入数据的特征图进行窗口分割,降低了注意力的计算复杂度。使用特征图滚动技术,在各自注意力之间和各窗口之间建立数据的联系,在降低计算复杂度的同时保证分类精度。将输入数据的位置信息融入注意力权重矩阵,增强神经网络对数据位置信息的辨别能力。在实验部分,为了测试算法的性能,将其应用到ZHS-2型多功能电机柔性转子试验台进行验证。实验结果表明,与其他数据驱动的故障诊断方法相比,该方法能更有效识别各种故障特征,实现故障诊断。 展开更多
关键词 机器学习 深度学习 故障诊断 多头注意力机制
下载PDF
基于多头注意力机制的瓦斯多粒度预测方法
4
作者 代劲 庄世鹏 《计算机仿真》 2024年第8期63-67,233,共6页
瓦斯是影响矿井安全的重要因素,但现有瓦斯预测工作忽略多粒度数据的异质性,使得预测精度不高。单粒度数据不能完全表示出瓦斯变化的特征,且现有方法不能完全挖掘不同粒度下的数据特性。基于多粒度思想,通过CNN聚合构建多粒度数据,并借... 瓦斯是影响矿井安全的重要因素,但现有瓦斯预测工作忽略多粒度数据的异质性,使得预测精度不高。单粒度数据不能完全表示出瓦斯变化的特征,且现有方法不能完全挖掘不同粒度下的数据特性。基于多粒度思想,通过CNN聚合构建多粒度数据,并借助LSTM与多头自注意力的特征提取能力,提出了基于多头自注意力机制的瓦斯多粒度预测模型(MGPM)。上述模型能够有效满足瓦斯预测任务中对不同粒度数据的构建,实现煤矿瓦斯数据在不同粒度特性下的深入挖掘。实验结果表明,所提出的模型相比与基线模型降低了预测误差。 展开更多
关键词 瓦斯预测 多粒度 特征提取 多头注意力
下载PDF
基于WGAN和多头注意力机制的学生数据生成模型
5
作者 张永梅 齐昊宇 郭奥 《北方工业大学学报》 2024年第1期76-83,共8页
对学生的跨学科能力和创新能力进行评价是目前研究的重点和难点。针对学生公开数据稀缺、获取难度大的问题,本文提出了一种基于Wasserstein Generative Adversarial Networks(WGAN)和多头注意力机制的学生数据生成模型。不同于传统生成... 对学生的跨学科能力和创新能力进行评价是目前研究的重点和难点。针对学生公开数据稀缺、获取难度大的问题,本文提出了一种基于Wasserstein Generative Adversarial Networks(WGAN)和多头注意力机制的学生数据生成模型。不同于传统生成式对抗网络(Generative Adversarial Networks,GAN),WGAN以Wasserstein距离为目标函数,强化了生成器的稳定性和训练的可收敛性,提高了生成数据的质量。针对WGAN可能出现的收敛速度慢、生成低质量数据的问题,在WGAN的生成器中引入了多头注意力机制,可以更好地捕捉学生数据中的潜在模式和结构,提高生成数据的质量,并采用均值、标准差和中位数对生成数据进行客观评价。实验结果表明,本文方法可以生成较高质量的学生数据。 展开更多
关键词 教学改革 多头注意力 对抗生成网络 数据生成 学生评价
下载PDF
基于TF-IDF和多头注意力Transformer模型的文本情感分析 被引量:9
6
作者 高佳希 黄海燕 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期129-136,共8页
文本情感分析旨在对带有情感色彩的主观性文本进行分析、处理、归纳和推理,是自然语言处理中一项重要任务。针对现有的计算方法不能充分处理复杂度和混淆度较高的文本数据集的问题,提出了一种基于TF-IDF(Term Frequency-Inverse Documen... 文本情感分析旨在对带有情感色彩的主观性文本进行分析、处理、归纳和推理,是自然语言处理中一项重要任务。针对现有的计算方法不能充分处理复杂度和混淆度较高的文本数据集的问题,提出了一种基于TF-IDF(Term Frequency-Inverse Document Frequency)和多头注意力Transformer模型的文本情感分析模型。在文本预处理阶段,利用TF-IDF算法对影响文本情感倾向较大的词语进行初步筛选,舍去常见的停用词及其他文本所属邻域对文本情感倾向影响较小的专有名词。然后,利用多头注意力Transformer模型编码器进行特征提取,抓取文本内部重要的语义信息,提高模型对语义的分析和泛化能力。该模型在多领域、多类型评论语料库数据集上取得了98.17%的准确率。 展开更多
关键词 文本情感分析 自然语言处理 多头注意力机制 TF-IDF算法 Transformer模型
下载PDF
基于多头注意力的中文电子病历命名实体识别 被引量:1
7
作者 肖丹 杨春明 +2 位作者 张晖 赵旭剑 李波 《计算机应用与软件》 北大核心 2024年第1期133-138,160,共7页
针对中文电子病历中复杂医疗实体的识别问题,提出一种联合特征与多头注意力相结合的实体识别方法。该方法使用字符、词性和词典组成的联合特征,利用BiLSTM和多头注意力分别提取句子的全局特征和局部特征,利用CRF结合所有特征完成实体标... 针对中文电子病历中复杂医疗实体的识别问题,提出一种联合特征与多头注意力相结合的实体识别方法。该方法使用字符、词性和词典组成的联合特征,利用BiLSTM和多头注意力分别提取句子的全局特征和局部特征,利用CRF结合所有特征完成实体标签的预测。实验结果表明,该方法F1值达89.16%,其中治疗和疾病两类实体分别达到94.76%和95.56%。 展开更多
关键词 命名实体识别 中文电子病历 多头注意力 长短期记忆网络 条件随机场
下载PDF
基于多头注意力动态图卷积网络的交通流预测 被引量:1
8
作者 邓涵优 陈红梅 +1 位作者 肖清 方圆 《太原理工大学学报》 北大核心 2024年第1期172-183,共12页
【目的】交通流预测对于城市交通系统的有效管理和运行至关重要。交通网络中不同路段或路口的流量随时间动态变化,空间邻近路段或路口的流量也会相互影响。为了更好地从交通流序列中学习不同路段或路口流量的时空相关性,提升交通流短时... 【目的】交通流预测对于城市交通系统的有效管理和运行至关重要。交通网络中不同路段或路口的流量随时间动态变化,空间邻近路段或路口的流量也会相互影响。为了更好地从交通流序列中学习不同路段或路口流量的时空相关性,提升交通流短时预测性能,提出基于多头注意力动态图卷积网络(dynamic graph convolution network with multi-head attention,DGCNMA)的交通流预测方法。【方法】DGCNMA模型在Transformer框架中首先引入图卷积网络学习交通流序列的空间嵌入并融入交通流序列,进而采用多头注意力机制从多个角度同时捕捉交通流序列的时间相关性和空间相关性;其次引入交互动态图卷积网络,通过卷积网络和动态图卷积网络交互学习以及交通流奇偶子序列特征交互融合,同时学习交通流序列的局部时空相关性和全局时空相关性。【结果】通过在高速公路交通流数据集(PEMS03、PEMS04、PEMS08)和地铁人群流量数据集(HZME inflow and HZME outflow)上的大量实验,验证了所提出的DGCNMA模型的交通流预测性能优于基线模型。 展开更多
关键词 交通流预测 多头注意力 交互动态图卷积
下载PDF
基于马尔可夫转换场与多头注意力机制的电能质量扰动分类方法 被引量:3
9
作者 钱倍奇 陈谦 +2 位作者 李宗源 张政伟 牛应灏 《电网技术》 EI CSCD 北大核心 2024年第2期721-729,共9页
新型电力系统中的电能质量扰动愈加复杂,为提升电能质量复杂扰动分类准确率并增强算法的噪声鲁棒性,提出了一种基于马尔可夫转换场与多头注意力机制的电能质量扰动分类方法。首先,利用马尔可夫转换场对电能质量扰动时序数据进行模态变换... 新型电力系统中的电能质量扰动愈加复杂,为提升电能质量复杂扰动分类准确率并增强算法的噪声鲁棒性,提出了一种基于马尔可夫转换场与多头注意力机制的电能质量扰动分类方法。首先,利用马尔可夫转换场对电能质量扰动时序数据进行模态变换,得到图像模态数据;然后,将图像模态数据输入卷积神经网络进行特征提取;最后,利用多头注意力机制着重关注卷积神经网络提取特征的重要部分并进行扰动分类。与常规的图像模态转换方法相比,该方法具有更好的扰动分类效果与抗噪声能力。 展开更多
关键词 电能质量扰动 深度学习 马尔可夫转换场 多头注意力机制
下载PDF
融合坐标与多头注意力机制的交互语音情感识别 被引量:1
10
作者 高鹏淇 黄鹤鸣 樊永红 《计算机应用》 CSCD 北大核心 2024年第8期2400-2406,共7页
语音情感识别(SER)是人机交互系统中一项重要且充满挑战性的任务。针对目前SER系统中存在特征单一和特征间交互性较弱的问题,提出多输入交互注意力网络MIAN。该网络由特定特征坐标残差注意力网络和共享特征多头注意力网络两个子网络组... 语音情感识别(SER)是人机交互系统中一项重要且充满挑战性的任务。针对目前SER系统中存在特征单一和特征间交互性较弱的问题,提出多输入交互注意力网络MIAN。该网络由特定特征坐标残差注意力网络和共享特征多头注意力网络两个子网络组成。前者利用Res2Net和坐标注意力模块学习从原始语音中获取的特定特征,并生成多尺度特征表示,增强模型对情感相关信息的表征能力;后者融合前向网络所获取的特征,组成共享特征,并经双向长短时记忆(BiLSTM)网络输入至多头注意力模块,能同时关注不同特征子空间中的相关信息,增强特征之间的交互性,以捕获判别性强的特征。通过2个子网络间的协同作用,能增加模型特征的多样性,增强特征之间的交互能力。在训练过程中,应用双损失函数共同监督,使同类样本更紧凑、不同类样本更分离。实验结果表明,MIAN在EMO-DB和IEMOCAP语料库上分别取得了91.43%和76.33%的加权平均精度,相较于其他主流模型,具有更好的分类性能。 展开更多
关键词 语音情感识别 坐标注意力机制 多头注意力机制 特定特征学习 共享特征学习
下载PDF
多头注意力机制的图同构网络智能合约源码漏洞检测
11
作者 师自通 师智斌 +2 位作者 刘冬明 雷海卫 龚晓元 《计算机工程与应用》 CSCD 北大核心 2024年第7期258-265,共8页
针对智能合约源码转化为字节码后部分语法、语义丢失,且现有漏洞检测方法精度低、误报率高,特别是对重入漏洞和时间戳漏洞的检测能力有限等问题,提出一种多头注意力机制的图同构网络智能合约源码漏洞检测方法。使用智能合约源码,结合重... 针对智能合约源码转化为字节码后部分语法、语义丢失,且现有漏洞检测方法精度低、误报率高,特别是对重入漏洞和时间戳漏洞的检测能力有限等问题,提出一种多头注意力机制的图同构网络智能合约源码漏洞检测方法。使用智能合约源码,结合重入漏洞和时间戳漏洞特点构建图结构并将其规范化;将规范化后的图结构数据投入图同构网络进行迭代训练,利用该网络强大的节点表示和图表示能力进行漏洞检测;在图同构网络的基础上增加多头注意力机制,进一步增强图同构网络的节点表示能力。实验结果显示该方法对重入漏洞和时间戳漏洞检测准确率达到93.08%和92.30%,相较于普通图同构网络方法分别提升1.44和2.00个百分点。证明该方法对相关漏洞的检测能力要优于其他检测工具。 展开更多
关键词 智能合约 漏洞检测 重入漏洞 时间戳漏洞 图同构网络 多头注意力机制
下载PDF
基于双分支多头注意力的场景图生成方法
12
作者 王立春 付芳玉 +2 位作者 徐凯 徐洪波 尹宝才 《北京工业大学学报》 CAS CSCD 北大核心 2024年第10期1198-1205,共8页
针对已有场景图生成模型获取上下文信息有限的问题,提出一种有效的上下文融合模块,即双分支多头注意力(dual-stream multi-head attention, DMA)模块,并将DMA分别用于物体分类阶段和关系分类阶段,基于此提出基于双分支多头注意力的场景... 针对已有场景图生成模型获取上下文信息有限的问题,提出一种有效的上下文融合模块,即双分支多头注意力(dual-stream multi-head attention, DMA)模块,并将DMA分别用于物体分类阶段和关系分类阶段,基于此提出基于双分支多头注意力的场景图生成网络(dual-stream multi-head attention-based scene graph generation network, DMA-Net)。该网络由目标检测、物体语义解析和关系语义解析3个模块组成。首先,通过目标检测模块定位图像中的物体并提取物体特征;其次,使用物体语义解析模块中的节点双分支多头注意力(object dual-stream multi-head attention, O-DMA)获取融合了节点上下文的特征,该特征经过物体语义解码器获得物体类别标签;最后,通过关系语义解析模块中的边双分支多头注意力(relationship dual-stream multi-head attention, R-DMA)输出融合了边上下文的特征,该特征经过关系语义解码器输出关系类别标签。在公开的视觉基因组(visual genome, VG)数据集上分别计算了DMA-Net针对场景图检测、场景图分类和谓词分类3个子任务的图约束召回率和无图约束召回率,并与主流的场景图生成方法进行比较。实验结果表明,所提出的方法能够充分挖掘场景中的上下文信息,基于上下文增强的特征表示有效提升了场景图生成任务的精度。 展开更多
关键词 场景图生成 上下文融合 双分支多头注意力(dual-stream multi-head attention DMA) 目标检测 物体分类 关系分类
下载PDF
改进多头注意力机制的车道检测方法
13
作者 葛泽坤 陶发展 +1 位作者 付主木 宋书中 《计算机工程与应用》 CSCD 北大核心 2024年第2期264-271,共8页
针对基于卷积神经网络(convolution neural network,CNN)的车道线检测方法存在的网络处理效率低和对车道线细长结构的建模能力不佳的问题,提出一种基于改进多头注意力机制(multi-head self-attention,MHSA)的轻量级车道检测方法。引入MH... 针对基于卷积神经网络(convolution neural network,CNN)的车道线检测方法存在的网络处理效率低和对车道线细长结构的建模能力不佳的问题,提出一种基于改进多头注意力机制(multi-head self-attention,MHSA)的轻量级车道检测方法。引入MHSA,融合Fuse MBConv、MBConv模块与特征压缩模块,降低模型的参数,同时利用上下文信息嵌入模块,建立兼顾检测精度和推理速度的全局注意力网络;利用Transformer的编码和解码器以及前向反馈网络将车道线参数化,结合匈牙利拟合损失函数提高所提出方法对车道线细长结构的建模能力。在TuSimple数据集对所提出的方法进行验证,结果表明,所提出的方法识别精度达到96.3%,推理速度达到95帧/s,同时在Apollo无人驾驶平台上的运行速度达到60帧/s,能够满足实时检测的要求。 展开更多
关键词 多头注意力机制 上下文信息 轻量级车道检测方法 无人驾驶平台
下载PDF
CINO双通道结合多头注意力机制藏文情感分类方法
14
作者 白玛洛赛 群诺 尼玛扎西 《电子设计工程》 2024年第3期1-6,共6页
为了解决藏文情感分类任务中现有的模型对文本语义信息理解和深层文本特征提取能力不足的问题,该文使用CINO(Chinese Minority PLM)预训练模型来获取动态词向量,通过TextCNN和BiGRU融合的双通道情感分类模型,分别实现获取文本局部特征... 为了解决藏文情感分类任务中现有的模型对文本语义信息理解和深层文本特征提取能力不足的问题,该文使用CINO(Chinese Minority PLM)预训练模型来获取动态词向量,通过TextCNN和BiGRU融合的双通道情感分类模型,分别实现获取文本局部特征和深层全局特征,并引入多头自注意力机制引导模型学习更重要的信息。实验结果表明,该文提出的双通道模型准确率高达92.84%,相较于该文的其他对比模型效果更佳。 展开更多
关键词 藏文情感分类 CINO 双通道 卷积神经网络 门控循环单元 多头注意力机制
下载PDF
基于周期图卷积与多头注意力GRU组合的交通流量预测模型 被引量:1
15
作者 钟林岚 张安勤 田秀霞 《计算机应用研究》 CSCD 北大核心 2024年第4期1041-1046,共6页
为了捕获交通流量数据中复杂的时空动态变化关系以及周期性变化的特征,同时避免道路突发情况引起的误差累计效应,提出一种基于周期图卷积(periodic graph convolution network,PGCN)与多头注意力门控循环单元(multi-head attention gate... 为了捕获交通流量数据中复杂的时空动态变化关系以及周期性变化的特征,同时避免道路突发情况引起的误差累计效应,提出一种基于周期图卷积(periodic graph convolution network,PGCN)与多头注意力门控循环单元(multi-head attention gated recurrent unit,MAGRU)组合的交通流量预测模型。首先,模型的时空数据融合模块利用交通流量的周期相似性构建周期图,同时将空间和时间编码信息添加至交通流量序列数据;然后在时空特征提取模块中,GCN子模块捕获周期特征图中的空间特征,MAGRU子模块捕获序列数据中的时间特征;最后通过门控融合机制将两者提取的时空特征进行融合。模型在两个真实的交通流量数据集上进行了实验。结果表明,该模型相较于多个最新基准模型,在MAE、RMSE、MAPE三个预测误差指标上平均降低了5.4%、22.8%、10.3%,R2精确度指标平均提高了11.6%。说明模型在预测精度方面有显著的改进,并能有效减少误差累积效应。 展开更多
关键词 交通流量预测 图卷积网络 多头注意力机制 门控循环单元 门控融合机制 时空融合
下载PDF
基于TextCNN与多头注意力机制增强xDeepFM的互联网营销活动参与预测研究
16
作者 邱家杰 何利力 郑军红 《软件工程》 2024年第10期54-59,共6页
在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCN... 在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCNN高效地从文本数据中提取关键特征;其次,通过多头注意力机制进行不同子空间的特征提取;最后,使用xDeepFM模型实现深度显隐特征的交叉融合。实验表明,在两个互联网营销活动数据集上,该模型的AUC值分别达到了69.09%和72.98%,表现出了较好的性能,与xDeepFM等流行模型及融合注意力机制的改进模型相比均有一定提升。 展开更多
关键词 深度学习 多头注意力机制 TextCNN xDeepFM 用户行为预测
下载PDF
基于LSTM和多头注意力机制的企业违约预测模型
17
作者 柏凤山 迟国泰 温武军 《管理工程学报》 CSSCI CSCD 北大核心 2024年第3期213-226,共14页
违约预测是指用企业过去时刻的数据和违约状态预测企业未来的违约概率。违约预测对股票投资、债券投资和银行贷款等具有极为重要的意义。本研究涉及两个科学问题:一是如何使用连续多年的企业数据预测企业违约概率;二是研究输入模型的每... 违约预测是指用企业过去时刻的数据和违约状态预测企业未来的违约概率。违约预测对股票投资、债券投资和银行贷款等具有极为重要的意义。本研究涉及两个科学问题:一是如何使用连续多年的企业数据预测企业违约概率;二是研究输入模型的每个时间窗口对违约预测状态的影响程度。用LSTM网络建立违约预测模型,用连续多年的企业数据预测违约概率,改变了违约预测建模时只用一个时间窗口预测违约概率的现状,并首次将多头注意力机制应用于违约预测模型,探索每个时间窗口对违约预测值的影响程度,避免了现有模型只做预测不揭示时间窗口对违约预测影响程度的弊端。研究表明:一是在违约预测建模时考虑企业数据的时序性更合理且会提升模型预测精度;二是违约预测的最佳时间窗口个数可以是5到10之间的数,总体上时间窗口越多违约预测精度越高;三是本文搭建的违约预测模型框架有效减少了违约预测结果的第2类错误,降低了坏客户被预测为好客户的风险。 展开更多
关键词 长短期记忆神经网络 多头注意力机制 违约预测
下载PDF
基于多头注意力机制和门控循环单元神经网络的居民充电桩容量预测
18
作者 谢乐 杨浙 刘东 《电机与控制应用》 2024年第3期21-29,共9页
居民充电桩的容量预测可为其定容选址提供参考,助力实现“双碳”目标,为此提出了一种基于数据驱动的居民充电桩容量预测方法。首先,采集了居民充电桩的历史容量数据并进行预处理;其次,利用不同大小的时序窗口对其进行切片作为输入特征;... 居民充电桩的容量预测可为其定容选址提供参考,助力实现“双碳”目标,为此提出了一种基于数据驱动的居民充电桩容量预测方法。首先,采集了居民充电桩的历史容量数据并进行预处理;其次,利用不同大小的时序窗口对其进行切片作为输入特征;最后,构建了结合多头注意力机制和门控循环单元神经网络的预测模型,将特征输入模型从而实现了对未来容量的精准预测。通过实例分析表明,该模型预测结果的平均绝对误差和均方根误差分别为33.19和102.14%,预测精度相较于其他模型有较大提升,为居民充电桩的容量预测提供了新思路。 展开更多
关键词 数据驱动 充电桩 容量预测 多头注意力机制 门控循环单元神经网络
下载PDF
基于多头注意力机制的多模态帕金森病安全检测系统 被引量:1
19
作者 季培琛 李晨 《计算机测量与控制》 2024年第3期138-145,共8页
在实际的帕金森病远程诊断过程中,应用单模态数据检测帕金森病存在误诊率较高的问题,且远程诊断的安全性问题突出;为提高帕金森病远程诊断准确率与安全性,设计一种具有隐私保护功能的帕金森病多模态安全远程辅助检测系统;使用帕金森病... 在实际的帕金森病远程诊断过程中,应用单模态数据检测帕金森病存在误诊率较高的问题,且远程诊断的安全性问题突出;为提高帕金森病远程诊断准确率与安全性,设计一种具有隐私保护功能的帕金森病多模态安全远程辅助检测系统;使用帕金森病语音和步态双模态数据,在传统卷积神经网络后融合多头注意力机制与多层感知机,有效提高模型的特征提取、融合与识别能力;为了保证数据传输过程的安全性,使用基于余弦混沌的差分隐私加噪方式扰动随机拆分的数据编号,提高帕金森病数据传输安全性;通过两模态消融实验和对比实验结果表明,提出的基于多头注意力机制的帕金森病多模态远程检测模型实际测试准确率达到0.913,且模型的各项评估指标和收敛速度等均高于传统模型,具备良好的帕金森病智能辅助检测效果,能够满足帕金森病早期智能安全筛查与诊断需求。 展开更多
关键词 帕金森病 多头注意力机制 余弦混沌 差分隐私 多模态远程检测
下载PDF
基于多头注意力机制的残差网络深度学习推荐模型
20
作者 张圆梦 李少波 +1 位作者 周鹏 杨明宝 《计算机与数字工程》 2024年第7期1955-1958,1965,共5页
深度学习由于其强大的特征表达能力,在推荐研究领域的应用逐渐广泛。DIN(Deep Interest Network)是一种基于注意力机制和用户兴趣进行推荐的深度学习模型,针对其存在的特征训练完备性较低、推荐精度有待提高的问题,提出一种基于DIN改进... 深度学习由于其强大的特征表达能力,在推荐研究领域的应用逐渐广泛。DIN(Deep Interest Network)是一种基于注意力机制和用户兴趣进行推荐的深度学习模型,针对其存在的特征训练完备性较低、推荐精度有待提高的问题,提出一种基于DIN改进的融合多头注意力模块与残差网络的深度学习推荐模型:MHAR-DIN(Multi-Head Attention Residual Deep Interest Network)。利用多头注意力模块基于用户历史行为进行注意力的打分,充分考虑用户的兴趣偏好,并引入残差网络结构将特征越过训练直接接入全连接器,解决过深网络难以训练的问题。在公开数据集MovieLens上与经典深度学习推荐模型的对比实验表明,所提MHAR-DIN模型具有一定有效性和可行性。 展开更多
关键词 多头注意力机制 残差网络 推荐算法 DIN 深度学习
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部