该文针对单路延迟对消系统不能有效解决多径信道的超短波无线电台共址干扰消除问题,给出了等间隔多路延迟正交合成的射频干扰对消方案,进而提出了新的衰减系数求解方法。在设定时间延迟范围和参考信号路数基础上,该方法通过迭代加权实...该文针对单路延迟对消系统不能有效解决多径信道的超短波无线电台共址干扰消除问题,给出了等间隔多路延迟正交合成的射频干扰对消方案,进而提出了新的衰减系数求解方法。在设定时间延迟范围和参考信号路数基础上,该方法通过迭代加权实时有效估计多路参考信号的相关矩阵,接收信号与参考信号的相关向量,进而求解维纳霍夫方程得到各路衰减系数,有效抑制多径信道的自干扰,克服了已有方法需同时调节幅度和相位,以及相关向量和相关矩阵估计精度低的不足。另外,理论分析了衰减系数的求解过程,并推导了自干扰对消比的闭合表达式。分析和仿真结果表明,该方法在一定延迟误差情况下,可获得90 d B以上的对消比,比已有方法提高了约9 d B,有效解决了多径信道的射频干扰对消问题。展开更多
文摘该文针对单路延迟对消系统不能有效解决多径信道的超短波无线电台共址干扰消除问题,给出了等间隔多路延迟正交合成的射频干扰对消方案,进而提出了新的衰减系数求解方法。在设定时间延迟范围和参考信号路数基础上,该方法通过迭代加权实时有效估计多路参考信号的相关矩阵,接收信号与参考信号的相关向量,进而求解维纳霍夫方程得到各路衰减系数,有效抑制多径信道的自干扰,克服了已有方法需同时调节幅度和相位,以及相关向量和相关矩阵估计精度低的不足。另外,理论分析了衰减系数的求解过程,并推导了自干扰对消比的闭合表达式。分析和仿真结果表明,该方法在一定延迟误差情况下,可获得90 d B以上的对消比,比已有方法提高了约9 d B,有效解决了多径信道的射频干扰对消问题。