With the development of the Ground Positioning System (GPS) modernization and the expectable implementation of Galileo, people pay more and more attention to civil applications on multi-frequency signals. This paper p...With the development of the Ground Positioning System (GPS) modernization and the expectable implementation of Galileo, people pay more and more attention to civil applications on multi-frequency signals. This paper proposes a new and advanced positioning algorithm for the dual-frequency satellite navigation receivers, concerning the various influences of all the ranging error sources and taking advantage of the Klobuchar single-frequency ionospheric model. The paper also presents positioning precision provided by the new algorithm. Theoretical analysis and experimental results show that, the new dual-frequency positioning algorithm can achieve higher positioning accu- racy than the single-frequency positioning algorithm and the traditional dual-frequency positioning algorithm.展开更多
文摘圆度误差是评价机床加工精度的重要指标。为实现机床圆度误差测量不确定度的评定,对基于球杆仪测量的机床圆度误差的贡献因素及不确定度评定方法进行研究。首先,采用最小二乘法(least sqaure method,LSM)对圆度误差进行评定。然后,基于黑箱理论提出了多源融合误差测量不确定度评定方法。接着,根据球杆仪测量机床圆度误差的基本原理,建立了机床圆度误差测量不确定度评定模型。最后,利用球杆仪对某加工中心ZX平面的圆度误差进行多组重复测量实验,采用所提出的方法对圆度误差测量不确定度进行计算,并与基于蒙特卡罗法(Monte Carlo method,MCM)的计算结果进行对比验证。结果表明,基于所提出方法和MCM的机床圆度误差测量不确定度的评定结果分别为1.1900和1.1600μm,两者的相对偏差约为2.5%,由此验证了所提出方法的可行性。所提出方法规避了繁杂的输入量与输出量之间函数关系的求解过程,简化了机床圆度误差测量不确定度的评定过程,具有较强的实用性。
文摘With the development of the Ground Positioning System (GPS) modernization and the expectable implementation of Galileo, people pay more and more attention to civil applications on multi-frequency signals. This paper proposes a new and advanced positioning algorithm for the dual-frequency satellite navigation receivers, concerning the various influences of all the ranging error sources and taking advantage of the Klobuchar single-frequency ionospheric model. The paper also presents positioning precision provided by the new algorithm. Theoretical analysis and experimental results show that, the new dual-frequency positioning algorithm can achieve higher positioning accu- racy than the single-frequency positioning algorithm and the traditional dual-frequency positioning algorithm.