A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensi...A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.展开更多
In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troubleso...In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.展开更多
This paper focuses on the quantitative analysis issue of the routing metrics tradeoff problem, and presents a Quantified Cost-Balanced overlay multicast routing scheme (QCost-Balanced) to the metric tradeoff problem b...This paper focuses on the quantitative analysis issue of the routing metrics tradeoff problem, and presents a Quantified Cost-Balanced overlay multicast routing scheme (QCost-Balanced) to the metric tradeoff problem between overlay path delay and access bandwidth at Multicast Server Nodes (MSN) for real-time ap-plications over Internet. Besides implementing a dynamic priority to MSNs by weighing the size of its service clients for better efficiency, QCost-Balanced tradeoffs these two metrics by a unified tradeoff metric based on quantitative analysis. Simulation experiments demonstrate that the scheme achieves a better tradeoff gain in both two metrics, and effective performance in metric quantitative control.展开更多
文摘A new on-line batch process monitoring and diagnosing approach based on Fisher discriminant analysis (FDA) was proposed. This method does not need to predict the future observations of variables, so it is more sensitive to fault detection and stronger implement for monitoring. In order to improve the monitoring performance, the variables trajectories of batch process are separated into several blocks. The key to the proposed approach for on-line monitoring is to calculate the distance of block data that project to low-dimension Fisher space between new batch and reference batch. Comparing the distance with the predefine threshold, it can be considered whether the batch process is normal or abnormal. Fault diagnosis is performed based on the weights in fault direction calculated by FDA. The proposed method was applied to the simulation model of fed-batch penicillin fermentation and the resuits were compared with those obtained using MPCA. The simulation results clearly show that the on-line monitoring method based on FDA is more efficient than the MPCA.
文摘In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.
文摘This paper focuses on the quantitative analysis issue of the routing metrics tradeoff problem, and presents a Quantified Cost-Balanced overlay multicast routing scheme (QCost-Balanced) to the metric tradeoff problem between overlay path delay and access bandwidth at Multicast Server Nodes (MSN) for real-time ap-plications over Internet. Besides implementing a dynamic priority to MSNs by weighing the size of its service clients for better efficiency, QCost-Balanced tradeoffs these two metrics by a unified tradeoff metric based on quantitative analysis. Simulation experiments demonstrate that the scheme achieves a better tradeoff gain in both two metrics, and effective performance in metric quantitative control.