匹配是一个边的集合,其中任意两条边都没有公共顶点。对于图G的一个匹配M,如果M中的边能够将G的所有顶点两两配对,则称该匹配为完美匹配。七个苯环生成的六角系统中具有完美匹配的六角系统个数为190个。本文计算出了这190个七个苯环生...匹配是一个边的集合,其中任意两条边都没有公共顶点。对于图G的一个匹配M,如果M中的边能够将G的所有顶点两两配对,则称该匹配为完美匹配。七个苯环生成的六角系统中具有完美匹配的六角系统个数为190个。本文计算出了这190个七个苯环生成的六角系统的双强迫多项式。同时将双强迫多项式、强迫多项式、反强迫多项式、完美匹配个数、自由度与反自由度对于图的区分情况进行了统计与比较。A matching is a set of edges, where any two edges have no common vertices. For a match M in graph G, if the edges in M can pair all the vertices of G in pairs, the match is said to be a perfect match. The number of hexagonal systems with perfect matchings among the hexagonal systems generated by seven benzene rings is 190. This paper calculates the di-forcing polynomials of the hexagonal system generated by these 190 seven benzene rings. At the same time, the discrimination of di-forcing polynomials, forced polynomials, anti-forced polynomials, number of perfect matches, degrees of freedom and anti-degrees of freedom for graphs is statistically compared.展开更多
六角系统是一个2-连通的有限平面二部图,其中每个内面边界都是单位的正六边形。具有凯库勒结构的六角系统H的双强迫多项式是H的所有完美匹配的强迫数和反强迫数的二元计数多项式。本文计算了苯环数目不超过六的六角系统的双强迫多项式,...六角系统是一个2-连通的有限平面二部图,其中每个内面边界都是单位的正六边形。具有凯库勒结构的六角系统H的双强迫多项式是H的所有完美匹配的强迫数和反强迫数的二元计数多项式。本文计算了苯环数目不超过六的六角系统的双强迫多项式,由此得到其强迫多项式,反强迫多项式,内自由度与外自由度,为六角系统的结构分析提供了新的数学工具和结果。The hexagonal system is a 2-connected finite plane bipartite graph, in which each inner boundary is a regular hexagon of a unit. The di-forcing polynomials of hexagonal systems H with Kekulé structure are the binary counting polynomials of all perfect matchings forcing and anti-forcing numbers of H. In this paper, the di-forcing polynomials of hexagonal systems with no more than six benzene rings are calculated, from which the forcing polynomials, anti-forcing polynomials, internal and external degrees of freedom are obtained, it provides a new mathematical tool and results for the structural analysis of hexagonal system.展开更多
大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于...大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于求解计及风电出力不确定性的概率ATC评估模型在计算效率和计算精度方面均存在一定的不足。为此,该文提出一种基于多项式混沌展开(polynomialchaos expansion,PCE)的电力系统概率ATC评估方法,该方法首先构建基于机会约束的电力系统概率ATC评估模型;然后,根据风电出力预测误差的概率分布特征,选择对应的正交多项式为基函数以近似风电出力预测误差及电力网络中与之相关联的其他随机变量;进一步,借助Galerkin投影和基于一阶矩、二阶矩的机会约束转化方法,将所构建的机会约束模型的概率约束转化为确定性约束,实现基于机会约束的概率ATC评估模型向易于求解的确定性优化模型的转化;进而,将概率ATC评估模型的求解问题转化为ATC的最优多项式逼近系数的求解问题,根据求得的最优多项式逼近系数和选取的基函数计算电力系统ATC的概率分布特征;最后,通过修改后的PJM-5节点测试系统、IEEE-118节点测试系统及吉林西部电网实际算例验证了所提基于多项式混沌展开的电力系统概率ATC评估方法的准确性和有效性。展开更多
文摘匹配是一个边的集合,其中任意两条边都没有公共顶点。对于图G的一个匹配M,如果M中的边能够将G的所有顶点两两配对,则称该匹配为完美匹配。七个苯环生成的六角系统中具有完美匹配的六角系统个数为190个。本文计算出了这190个七个苯环生成的六角系统的双强迫多项式。同时将双强迫多项式、强迫多项式、反强迫多项式、完美匹配个数、自由度与反自由度对于图的区分情况进行了统计与比较。A matching is a set of edges, where any two edges have no common vertices. For a match M in graph G, if the edges in M can pair all the vertices of G in pairs, the match is said to be a perfect match. The number of hexagonal systems with perfect matchings among the hexagonal systems generated by seven benzene rings is 190. This paper calculates the di-forcing polynomials of the hexagonal system generated by these 190 seven benzene rings. At the same time, the discrimination of di-forcing polynomials, forced polynomials, anti-forced polynomials, number of perfect matches, degrees of freedom and anti-degrees of freedom for graphs is statistically compared.
文摘六角系统是一个2-连通的有限平面二部图,其中每个内面边界都是单位的正六边形。具有凯库勒结构的六角系统H的双强迫多项式是H的所有完美匹配的强迫数和反强迫数的二元计数多项式。本文计算了苯环数目不超过六的六角系统的双强迫多项式,由此得到其强迫多项式,反强迫多项式,内自由度与外自由度,为六角系统的结构分析提供了新的数学工具和结果。The hexagonal system is a 2-connected finite plane bipartite graph, in which each inner boundary is a regular hexagon of a unit. The di-forcing polynomials of hexagonal systems H with Kekulé structure are the binary counting polynomials of all perfect matchings forcing and anti-forcing numbers of H. In this paper, the di-forcing polynomials of hexagonal systems with no more than six benzene rings are calculated, from which the forcing polynomials, anti-forcing polynomials, internal and external degrees of freedom are obtained, it provides a new mathematical tool and results for the structural analysis of hexagonal system.
文摘大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于求解计及风电出力不确定性的概率ATC评估模型在计算效率和计算精度方面均存在一定的不足。为此,该文提出一种基于多项式混沌展开(polynomialchaos expansion,PCE)的电力系统概率ATC评估方法,该方法首先构建基于机会约束的电力系统概率ATC评估模型;然后,根据风电出力预测误差的概率分布特征,选择对应的正交多项式为基函数以近似风电出力预测误差及电力网络中与之相关联的其他随机变量;进一步,借助Galerkin投影和基于一阶矩、二阶矩的机会约束转化方法,将所构建的机会约束模型的概率约束转化为确定性约束,实现基于机会约束的概率ATC评估模型向易于求解的确定性优化模型的转化;进而,将概率ATC评估模型的求解问题转化为ATC的最优多项式逼近系数的求解问题,根据求得的最优多项式逼近系数和选取的基函数计算电力系统ATC的概率分布特征;最后,通过修改后的PJM-5节点测试系统、IEEE-118节点测试系统及吉林西部电网实际算例验证了所提基于多项式混沌展开的电力系统概率ATC评估方法的准确性和有效性。