大型光伏电站经常面临严重的电压波动问题。传统的集中式控制方案采用中央控制器进行无功优化,以确保系统稳定运行。然而,这种方案存在计算负担过重、容易发生单点故障和网络安全问题的弊端。为了解决这些问题,分布式优化方法被提出并...大型光伏电站经常面临严重的电压波动问题。传统的集中式控制方案采用中央控制器进行无功优化,以确保系统稳定运行。然而,这种方案存在计算负担过重、容易发生单点故障和网络安全问题的弊端。为了解决这些问题,分布式优化方法被提出并应用于大型光伏电站。该方法将电站划分为多个子系统,并使用局部控制器分别解决每个子系统的优化问题。相邻子系统之间的信息交流较少,系统信息更加安全,同时也能处理规模更大的光伏电站。基于交替方向乘子法(alternating direction method of multipliers,ADMM),提出一种适用于大型光伏电站的分布式无功优化方案解决电站电压越限问题,并通过案例验证其有效性。此外,通过分析支路潮流模型约束的线性化处理对潮流求解的影响和罚函数系数对ADMM性能的影响,进一步提升优化参数,优化大型光伏电站的运行结果。展开更多
为了满足光伏电站并网对公共连接点(Point of common coupling,PCC)无功电压控制要求,基于九区图原理,以PCC电压和功率因数均合格为最优控制目标,针对PQ电源型和PV电源型的大型光伏电站提出了的无功电压控制策略。搭建了PQ电源型和PV电...为了满足光伏电站并网对公共连接点(Point of common coupling,PCC)无功电压控制要求,基于九区图原理,以PCC电压和功率因数均合格为最优控制目标,针对PQ电源型和PV电源型的大型光伏电站提出了的无功电压控制策略。搭建了PQ电源型和PV电源型大型光伏电站的等效模型,给出光伏电站无功电压控制策略实施流程图。以典型光伏电站出力和负荷动态变化为基础,通过搭建一个含大型并网光伏电站的110 kV系统,对光伏电站的无功电压控制进行仿真。仿真结果验证了所提策略的有效性和实用性。展开更多
文摘大型光伏电站经常面临严重的电压波动问题。传统的集中式控制方案采用中央控制器进行无功优化,以确保系统稳定运行。然而,这种方案存在计算负担过重、容易发生单点故障和网络安全问题的弊端。为了解决这些问题,分布式优化方法被提出并应用于大型光伏电站。该方法将电站划分为多个子系统,并使用局部控制器分别解决每个子系统的优化问题。相邻子系统之间的信息交流较少,系统信息更加安全,同时也能处理规模更大的光伏电站。基于交替方向乘子法(alternating direction method of multipliers,ADMM),提出一种适用于大型光伏电站的分布式无功优化方案解决电站电压越限问题,并通过案例验证其有效性。此外,通过分析支路潮流模型约束的线性化处理对潮流求解的影响和罚函数系数对ADMM性能的影响,进一步提升优化参数,优化大型光伏电站的运行结果。
文摘为了满足光伏电站并网对公共连接点(Point of common coupling,PCC)无功电压控制要求,基于九区图原理,以PCC电压和功率因数均合格为最优控制目标,针对PQ电源型和PV电源型的大型光伏电站提出了的无功电压控制策略。搭建了PQ电源型和PV电源型大型光伏电站的等效模型,给出光伏电站无功电压控制策略实施流程图。以典型光伏电站出力和负荷动态变化为基础,通过搭建一个含大型并网光伏电站的110 kV系统,对光伏电站的无功电压控制进行仿真。仿真结果验证了所提策略的有效性和实用性。