贝母是广泛应用于临床实践的中药材,其中川贝母尤为珍贵,存在掺假及伪冒现象,伪劣贝母会对用药者的健康产生不良影响。太赫兹时域光谱(Terahertz time domain spectroscopy)具有瞬态性、宽带性、安全性和穿透性等许多优越特性,近年来在...贝母是广泛应用于临床实践的中药材,其中川贝母尤为珍贵,存在掺假及伪冒现象,伪劣贝母会对用药者的健康产生不良影响。太赫兹时域光谱(Terahertz time domain spectroscopy)具有瞬态性、宽带性、安全性和穿透性等许多优越特性,近年来在药食无损检测领域十分活跃。以四种常见贝母(川贝母、平贝母、伊贝母、浙贝母)为研究对象,探究利用太赫兹时域光谱技术鉴别贝母品种的可行性。利用TAS7500TS太赫兹光谱系统采集贝母样品在0.6~3.0 THz范围内的光谱,并结合化学计量学方法进行预处理与建立分类模型。当分类数量为二时,称为二分类问题,当分类数量超过二时称为多分类问题。利用偏最小二乘判别分析(PLS-DA)建立四种贝母的二分类模型;使用Savitzky-Golay(S-G)平滑、多元散射校正(MSC)、标准正态变量变换(SNV)、移动平均、基线偏移校正(Baseline offset)对原始光谱进行预处理,再采用主成分分析(PCA)对预处理后的数据进行降维,以减少数据运算量、简化运算,最后建立随机森林(RF)、支持向量机(SVM)、反向传播神经网络(BPNN)多分类模型。结果显示:川-伊贝母二分类鉴别模型正确率为93.333%,平-浙贝母二分类鉴别模型正确率为98.333%,其他四种二分类鉴别模型正确率均为100%。对建立的多分类模型进行对比分析发现SVM结合SNV建模效果最好,其中川贝母正确率为95.349%,伊贝母正确率为96.552%,平贝母与浙贝母正确率均为100%,整体正确率高达97.490%。研究结果表明利用太赫兹时域光谱技术鉴别不同品种贝母是可行的,并建立了分类效果较好的SNV-SVM多分类模型,为把控中药材质量提供一种新的手段,对维护中药材市场的正常运转具有重要的意义。展开更多