用直接积分法计算两个耦合Van der Pol振子系统的一阶近似守恒量,将两个耦合Van der Pol振子系统看成是未受微扰系统与微扰项的迭加,先通过坐标变换将未受微扰系统解耦,并对解耦系统的3种可能状态进行讨论,得到未受微扰系统的13个精确...用直接积分法计算两个耦合Van der Pol振子系统的一阶近似守恒量,将两个耦合Van der Pol振子系统看成是未受微扰系统与微扰项的迭加,先通过坐标变换将未受微扰系统解耦,并对解耦系统的3种可能状态进行讨论,得到未受微扰系统的13个精确守恒量,再考虑微扰项对精确守恒量的影响,运用一阶近似守恒量的性质,得到1个稳定的一阶近似守恒量.另外,由13个精确守恒量直接得到13个平凡的一阶近似守恒量.展开更多
文摘用直接积分法计算两个耦合Van der Pol振子系统的一阶近似守恒量,将两个耦合Van der Pol振子系统看成是未受微扰系统与微扰项的迭加,先通过坐标变换将未受微扰系统解耦,并对解耦系统的3种可能状态进行讨论,得到未受微扰系统的13个精确守恒量,再考虑微扰项对精确守恒量的影响,运用一阶近似守恒量的性质,得到1个稳定的一阶近似守恒量.另外,由13个精确守恒量直接得到13个平凡的一阶近似守恒量.