Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It...Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It can be concluded that the groundwater is warm (34.0-37.2 ℃) C1-Ca, Na type water with circum-neutral pH (7.35-8.28) and high total dissolved solids (TDS, 1 746-2 849 mg/L). The groundwater exhibits heavy REEs enrichment relative to light REEs compared with Post Archean Average Shale (PAAS), as well as their aquifer rocks (limestone). The enrichment of REEs is considered to be controlled by terrigeneous materials (e.g. zircon) in aquifer rocks, whereas the fractionation of REEs is controlled by marine derived materials (e.g. calcite), to a less extent, terrigeneous materials and inorganic complexation. The Ce anomalies normalized to PAAS and aquifer rocks are weak, which probably reflects the signature of the aquifer rock rather than redox conditions or pH. The similarities of REE patterns between groundwater and aquifer rocks imply that aquifer rocks play important roles in controlling the REE characteristics of groundwater, and then provide a probability for discrimination of groundwater sources by using REEs.展开更多
As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep co...As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method.展开更多
Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established ac...Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established according to coal mine intrinsic safety standards. It provides theory support for the application of high power intrinsically safe power supply. The released energy of output short circuit of switch power supply, and the close related factors that influence the biggest output short-circuit spark discharge energy are the theoretical basis of the power supply. It is shown how to make a high power intrinsically safe power supply using the calculated values in the mathematical model, and take values from intrinsically safe requirements parameters scope, then this theoretical calculation value can be developed as the ultimate basis for research of the power supply. It gets the identification method of intrinsically safe from mathematics model of intrinsically safe power supply characteristics study, which solves the problem of theory and application of designing different power intrinsically safe power supply, and designs a kind of high power intrinsically safe power supply through this method. energy, flyback展开更多
In exploiting shallow coal resources in western China, conservation of water resources is often subjugated to considerations of safety and production in coal mines. In order to maintain a sustainable development in th...In exploiting shallow coal resources in western China, conservation of water resources is often subjugated to considerations of safety and production in coal mines. In order to maintain a sustainable development in the Shenfu-Dongsheng coalfield, we propose a technology of constructing groundwater reservoirs in goafs in shallow coalfields to protect fragile ecological environments. Given the premise of safe production, we selected an appropriate goaf as the site for constructing a groundwater reservoir and used a mine water recharge technique in combination with other related techniques for effective water conservation. Then filtering and purification techniques were used to purify the mine water given the physical and chemical properties of mine water and its filling material, ,thereby greatly reducing suspended matter, calcium and other harmful ions in the water. With the potential of widely application, the research result has been successfully applied in the Daliuta coal mine, to great economic and ecological effect. Therefore, this achievement provides a new way for mine water conservation in shallow coal resources in western China.展开更多
The coal resource has an important role in the energy development strategy in China. Because the coal resources are a kind of non-renewable resources, a Kind of ex-hausting resource, which is limited in quantity, and ...The coal resource has an important role in the energy development strategy in China. Because the coal resources are a kind of non-renewable resources, a Kind of ex-hausting resource, which is limited in quantity, and the exploitation of the recourses are not economized now, so how to realize the sustainable development for coal resource in China is very important. In this paper, two parts were researched to optimize the coal mining. In order to optimize the mining order of different mining areas, the fuzzy logic evaluation was used to build the evaluation system. The economic control theory model was built to realize the proper period to explore the coal recourses for the same mining areas.展开更多
基金Project(40873015) supported by the National Natural Science Foundation of ChinaProject(08010302062) supported by the Eleventh Five-year Scientific and Technological Program of Anhui Province,China
文摘Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It can be concluded that the groundwater is warm (34.0-37.2 ℃) C1-Ca, Na type water with circum-neutral pH (7.35-8.28) and high total dissolved solids (TDS, 1 746-2 849 mg/L). The groundwater exhibits heavy REEs enrichment relative to light REEs compared with Post Archean Average Shale (PAAS), as well as their aquifer rocks (limestone). The enrichment of REEs is considered to be controlled by terrigeneous materials (e.g. zircon) in aquifer rocks, whereas the fractionation of REEs is controlled by marine derived materials (e.g. calcite), to a less extent, terrigeneous materials and inorganic complexation. The Ce anomalies normalized to PAAS and aquifer rocks are weak, which probably reflects the signature of the aquifer rock rather than redox conditions or pH. The similarities of REE patterns between groundwater and aquifer rocks imply that aquifer rocks play important roles in controlling the REE characteristics of groundwater, and then provide a probability for discrimination of groundwater sources by using REEs.
基金Financial support for this project, provided by the National Basic Research Program of China (No. 2006CB202200)the National Major Project of Ministry of Education (No.304005) the Program for Changjiang Scholars and Innovative Research Team in University of China (No.IRT0656), is gratefully acknowledged
文摘As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method.
文摘Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established according to coal mine intrinsic safety standards. It provides theory support for the application of high power intrinsically safe power supply. The released energy of output short circuit of switch power supply, and the close related factors that influence the biggest output short-circuit spark discharge energy are the theoretical basis of the power supply. It is shown how to make a high power intrinsically safe power supply using the calculated values in the mathematical model, and take values from intrinsically safe requirements parameters scope, then this theoretical calculation value can be developed as the ultimate basis for research of the power supply. It gets the identification method of intrinsically safe from mathematics model of intrinsically safe power supply characteristics study, which solves the problem of theory and application of designing different power intrinsically safe power supply, and designs a kind of high power intrinsically safe power supply through this method. energy, flyback
基金Projects NCET-05-0480 supported by the New Century Excellent Talents in University50904063 by the National Natural Science Foundation of China+1 种基金07KF09 by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining & Technology2008A003 and 2005B002 by the Scientific Research Foundation of China University of Mining & Technology
文摘In exploiting shallow coal resources in western China, conservation of water resources is often subjugated to considerations of safety and production in coal mines. In order to maintain a sustainable development in the Shenfu-Dongsheng coalfield, we propose a technology of constructing groundwater reservoirs in goafs in shallow coalfields to protect fragile ecological environments. Given the premise of safe production, we selected an appropriate goaf as the site for constructing a groundwater reservoir and used a mine water recharge technique in combination with other related techniques for effective water conservation. Then filtering and purification techniques were used to purify the mine water given the physical and chemical properties of mine water and its filling material, ,thereby greatly reducing suspended matter, calcium and other harmful ions in the water. With the potential of widely application, the research result has been successfully applied in the Daliuta coal mine, to great economic and ecological effect. Therefore, this achievement provides a new way for mine water conservation in shallow coal resources in western China.
基金Supported by Social Science Foundation of China (05CJL017)School Social Science Foundation of Jiangsu (05SJD630002)
文摘The coal resource has an important role in the energy development strategy in China. Because the coal resources are a kind of non-renewable resources, a Kind of ex-hausting resource, which is limited in quantity, and the exploitation of the recourses are not economized now, so how to realize the sustainable development for coal resource in China is very important. In this paper, two parts were researched to optimize the coal mining. In order to optimize the mining order of different mining areas, the fuzzy logic evaluation was used to build the evaluation system. The economic control theory model was built to realize the proper period to explore the coal recourses for the same mining areas.