期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
基于潜在关系的实体关系联合抽取模型
1
作者 彭晏飞 张睿思 +1 位作者 王瑞华 郭家隆 《计算机科学与探索》 CSCD 北大核心 2024年第4期1047-1056,共10页
实体关系联合抽取的作用是从特定文本中识别出实体和对应关系,同时它也是知识图谱构建和更新的基础。目前的联合抽取方法在追求性能的同时都忽略了抽取过程中的信息冗余。针对此问题,提出基于潜在关系的实体关系联合抽取模型,通过设计... 实体关系联合抽取的作用是从特定文本中识别出实体和对应关系,同时它也是知识图谱构建和更新的基础。目前的联合抽取方法在追求性能的同时都忽略了抽取过程中的信息冗余。针对此问题,提出基于潜在关系的实体关系联合抽取模型,通过设计一种新的解码方式来减少预测过程中关系、实体和三元组的冗余信息,从整体上分为提取潜在实体对、解码关系两步来完成从句子中抽取三元组的任务。首先通过潜在实体对提取器预测实体间是否存在潜在关系,同时筛选出置信度高的实体对作为最终的潜在实体对;其次将关系解码视作多标签二分类任务,通过关系解码器预测每个潜在实体对之间全部关系的置信度;最后通过置信度确定关系数量和类型,以完成三元组的抽取任务。在两个通用数据集上的实验结果表明,所提模型相比基线模型在准确率和F1指标上的效果更好,验证了所提模型的有效性,消融实验也证明了模型内部各部分的有效性。 展开更多
关键词 实体关系联合抽取 潜在关系 潜在实体 多标签二分类任务 信息冗余
下载PDF
基于多头自注意力机制和对抗训练的实体关系联合抽取 被引量:1
2
作者 甘雨金 李红军 +3 位作者 唐小川 王子怡 甘晨灼 胡正浩 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期513-521,共9页
实体关系联合抽取是构建知识图谱的重要阶段,旨在抽取文本中存在语义关系的实体对。针对已有的实体关系联合抽取方法在抽取过程中存在的冗余关系预测、实体关系重叠以及上下文潜在语义信息捕捉不足的问题,提出联合多头自注意力机制和对... 实体关系联合抽取是构建知识图谱的重要阶段,旨在抽取文本中存在语义关系的实体对。针对已有的实体关系联合抽取方法在抽取过程中存在的冗余关系预测、实体关系重叠以及上下文潜在语义信息捕捉不足的问题,提出联合多头自注意力机制和对抗训练的方法进行实体关系的抽取。该方法利用多头自注意力机制捕获潜在语义特征,以提升模型对上下文语义信息的感知能力;将对抗训练引入模型的训练阶段,以增强模型的泛化能力和鲁棒性。实验结果表明:与现有主流模型对比,提出的模型在NYT和WebNLG两个公共数据集上都取得了更优的F 1值,在处理实体关系重叠问题以及不定数量三元组抽取上都能保持稳定的性能表现,验证了模型的有效性。 展开更多
关键词 实体关系联合抽取 对抗训练 多头自注意力 知识图谱
下载PDF
基于异构图注意力网络的药物不良反应实体关系联合抽取研究
3
作者 仲雨乐 韩普 许鑫 《现代情报》 CSSCI 北大核心 2024年第9期71-81,共11页
[目的/意义]实体关系联合抽取是药物不良反应监测和知识组织的关键环节。为解决传统流水线抽取方法中误差传递、实体冗余和交互缺失问题,提升药物不良反应重叠三元组抽取效果,提出了一种基于异构图注意力网络的药物不良反应实体关系联... [目的/意义]实体关系联合抽取是药物不良反应监测和知识组织的关键环节。为解决传统流水线抽取方法中误差传递、实体冗余和交互缺失问题,提升药物不良反应重叠三元组抽取效果,提出了一种基于异构图注意力网络的药物不良反应实体关系联合抽取模型MF-HGAT。[方法/过程]首先通过BERT预训练进行外部医学语料资源的知识迁移,实现多语义特征融合;其次将关系信息作为先验知识引入为异构图节点,以避免提取语义无关实体;然后通过迭代融合异构图注意力网络消息传递机制增强字符与关系节点表示;最后在节点表示更新后抽取药物不良反应实体关系。[结果/结论]在自构建药物不良反应数据集上进行实验,发现融入关系信息和外部医疗健康领域知识的MF-HGAT联合抽取F1值达到了92.75%,较主流模型CasRel提升了5.29%。研究结果表明,MF-HGAT模型通过异构图注意力网络融合字符与关系节点语义,可有效解决药物不良反应实体关系重叠问题,对药物不良反应知识发现具有重要意义。 展开更多
关键词 异构图注意力网络 实体关系联合抽取 药物不良反应 关系重叠 知识发现
下载PDF
基于实体对注意力机制的实体关系联合抽取模型
4
作者 朱继召 赵一霖 +2 位作者 张家鑫 黄友澎 范纯龙 《中文信息学报》 CSCD 北大核心 2024年第2期99-108,共10页
实体关系抽取是实现海量文本数据知识化、自动构建大规模知识图谱的关键技术。考虑到头尾实体信息对关系抽取有重要影响,该文采用注意力机制将实体对信息融合到关系抽取过程中,提出了基于实体对注意力机制的实体关系联合抽取模型(EPSA)... 实体关系抽取是实现海量文本数据知识化、自动构建大规模知识图谱的关键技术。考虑到头尾实体信息对关系抽取有重要影响,该文采用注意力机制将实体对信息融合到关系抽取过程中,提出了基于实体对注意力机制的实体关系联合抽取模型(EPSA)。首先,使用双向长短时记忆网络(Bi-LSTM)结合条件随机场(CRF)完成实体的识别;其次,将抽取的实体配对,信息融合成统一的嵌入式表示形式,用于计算句子中各词的注意力值;然后,使用基于实体对注意力机制的句子编码模块得到句子表示,再利用显式融合实体对的信息得到增强型句子表示;最后,通过分类方式完成实体关系的抽取。在公开数据集NYT和WebNLG上对提出的EPSA模型进行评估,实现结果表明,与目前主流联合抽取模型相比,EPSA模型在F_(1)值上均得到提升,分别达到84.5%和88.5%,并解决了单一实体重叠问题。 展开更多
关键词 知识图谱 注意力机制 实体关系联合抽取
下载PDF
一种基于跨度的实体关系联合抽取模型
5
作者 段慧蓉 冯国富 《技术与市场》 2024年第6期26-29,34,共5页
实体关系联合抽取旨在从文本中自动识别实体及实体间的关系,并生成<主体实体、关系、客体实体>三元组形式的语义信息,在问答系统、知识图谱等领域具有重要意义。但是目前仍然存在着实体关系重叠、误差累计等问题。为了解决上述问... 实体关系联合抽取旨在从文本中自动识别实体及实体间的关系,并生成<主体实体、关系、客体实体>三元组形式的语义信息,在问答系统、知识图谱等领域具有重要意义。但是目前仍然存在着实体关系重叠、误差累计等问题。为了解决上述问题,提出了一种基于跨度的实体关系联合抽取模型SpERT.MDP。该模型在实体和关系分类中融入句法信息和词性特征,以及使用多层感知器(multi-layer perceptron,MLP)和softmax进行跨度分类。试验结果表明:所提出的模型优于目前主流模型。 展开更多
关键词 实体关系联合抽取 依存句法分析 词性标注 多层感知器
下载PDF
融合强化学习的实体关系联合抽取模型
6
作者 翟社平 李航 +1 位作者 亢鑫年 杨锐 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期243-251,共9页
现有的实体关系联合抽取任务为了自动生成大规模训练数据引入远程监督策略,在处理数据时产生严重的噪声数据问题。对此提出了一种融合强化学习的实体关系联合抽取模型,该模型由强化学习和联合抽取模型两个部分组成,其中联合抽取模型由... 现有的实体关系联合抽取任务为了自动生成大规模训练数据引入远程监督策略,在处理数据时产生严重的噪声数据问题。对此提出了一种融合强化学习的实体关系联合抽取模型,该模型由强化学习和联合抽取模型两个部分组成,其中联合抽取模型由图卷积网络和多头自注意力机制构成。首先,使用强化学习去除原始数据集中带有噪声的句子,将降噪后的高质量句子输入到联合抽取模型中;其次,使用联合抽取模型对输入句子中的实体和关系进行预测抽取,并向强化学习提供反馈奖励,指导强化学习挑选出高质量的句子;最后,对强化学习和联合抽取模型进行联合训练,并对模型进行迭代优化。实验证明了该模型能够有效处理数据噪声问题,在实体关系抽取方面优于基线方法。 展开更多
关键词 实体关系联合抽取 噪声数据 强化学习 多头自注意力机制 图卷积网络
下载PDF
基于空洞卷积神经网络的铝硅合金实体关系联合抽取模型(英文)
7
作者 李武亮 邱洪顺 +3 位作者 周治邦 罗光辉 郜洪波 王鸿湫 《材料导报》 EI CAS CSCD 北大核心 2024年第S01期501-511,共11页
近年来,材料基因组计划(Material genome initiative,MGI)已经成为全球热点。随着材料科学的不断发展,材料文献中包含的海量信息成为研究人员关注的焦点,如何获取大量有效的材料数据是现阶段的主要挑战。本文采用自然语言处理(Natural l... 近年来,材料基因组计划(Material genome initiative,MGI)已经成为全球热点。随着材料科学的不断发展,材料文献中包含的海量信息成为研究人员关注的焦点,如何获取大量有效的材料数据是现阶段的主要挑战。本文采用自然语言处理(Natural language processing,NLP)技术从铝硅合金材料文献中获取数据。命名实体识别(Named entity recognition,NER)和关系抽取(Relation extraction,RE)是NLP的两个子任务,可以高效地从文本中提取单词信息及其之间的关系。铝硅合金文献中存在多种命名实体及多种关系,本文从材料科学文献中选择11种实体类型和13种关系类型,手动标注构建了铝硅合金实体关系数据集,将命名实体识别与关系抽取进行联合学习,即对实体识别和关系抽取进行统一建模。此外,针对基础模型的编码层存在捕捉文本语义信息不充分问题,通过改进模型的编码层,将基础模型的BiLSTM层与空洞卷积模型结合,组成了新的编码器,避免了BiLSTM处理文本信息丢失的问题,最终使铝硅合金实体关系联合抽取模型能够更好地捕捉文本中句子的语义单元信息。 展开更多
关键词 材料基因组 铝硅合金文献 实体关系联合抽取 数据集 空洞卷积神经网络
下载PDF
融合对抗训练及全局指针的实体关系联合抽取
8
作者 李文炽 刘远兴 +3 位作者 蔡泽宇 吴湘宁 胡远江 杨翼 《计算机系统应用》 2024年第6期91-98,共8页
实体关系联合抽取旨在从文本中抽取出实体关系三元组,是构建知识图谱十分重要的步骤之一.针对实体关系抽取中存在的信息表达能力不强、泛化能力较差、实体重叠和关系冗余等问题,提出了一种实体关系联合抽取模型RGPNRE.使用RoBERTa预训... 实体关系联合抽取旨在从文本中抽取出实体关系三元组,是构建知识图谱十分重要的步骤之一.针对实体关系抽取中存在的信息表达能力不强、泛化能力较差、实体重叠和关系冗余等问题,提出了一种实体关系联合抽取模型RGPNRE.使用RoBERTa预训练模型作为编码器,提高了模型的表达信息能力.在训练过程中引入了对抗训练,提升了模型的泛化能力.使用全局指针,解决了实体重叠的问题.使用关系预测,排除不可能的关系,减少了冗余的关系.在基于schema的中文医学信息抽取数据集CMeIE上进行的实体关系抽取实验表明,模型的F1值比基准模型提升了约2个百分点,在实体对重叠的情况下,模型的F1值提升了近10个百分点,在单一实体重叠情况下,模型的F1值提升了大约1个百分点,说明该模型能够更准确地提取实体关系三元组,从而有效提升知识图谱构建的准确度.在含有1–5个三元组的对比实验中,在拥有4个三元组的句子中,模型的F1值提升了约2个百分点,而在拥有5个及以上三元组的复杂句子中,F1值提升了约1个百分点,说明该模型能够较好地处理复杂句子场景. 展开更多
关键词 实体关系联合抽取 对抗训练 RoBERTa
下载PDF
基于深度学习的实体关系联合抽取研究综述 被引量:7
9
作者 张仰森 刘帅康 +2 位作者 刘洋 任乐 辛永辉 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1093-1116,共24页
实体关系抽取是信息抽取领域的核心任务.从文本中抽取的实体关系三元组是构建大规模知识图谱的基础.传统的流水线方法将实体关系抽取分解为独立的命名实体识别和关系抽取两个子任务.首先,构建一个高效的命名实体识别器,从大规模非结构... 实体关系抽取是信息抽取领域的核心任务.从文本中抽取的实体关系三元组是构建大规模知识图谱的基础.传统的流水线方法将实体关系抽取分解为独立的命名实体识别和关系抽取两个子任务.首先,构建一个高效的命名实体识别器,从大规模非结构化文本语句中识别实体边界和类型.然后,将该命名实体识别器识别的实体与类型作为关系抽取任务中所用数据的标注.最后,通过关系抽取器得到两个实体之间的关系类别,进而组合成为结构化的实体关系三元组.命名实体识别任务存在的误差会影响后续的关系抽取任务的性能,这使得流水线方法具有错误累积问题.这是因为关系抽取任务中使用的标注数据来自于前面的命名实体识别任务,这会有一定的误差,进而影响关系抽取的结果质量.此外,流水线方法减弱了两个子任务之间的特征关联,这会出现冗余实体的问题.命名实体识别任务和关系抽取任务独立进行学习训练,导致这两个子任务间缺乏交互,使得文本信息没有得到充分利用,限制了流水线方法的性能瓶颈.由于非结构化文本信息没有得到充分利用,流水线方法在抽取实体间长依赖关系时具有一定局限性,很难达到联合抽取模型的性能指标.实际应用中,实体间往往存在多种关系,流水线方法无法充分使用全局文本信息,且命名实体识别会产生冗余实体,在抽取多元重叠关系时,该方法具有一定的局限性.因此,在构建高准确率实体关系抽取模型时,流水线方法具有欠缺之处.本文对实体关系联合抽取的研究发展全景进行了综述,简要阐明整数线性规划、卡片金字塔解析模型、概率图模型和结构化预测模型这四类基于特征工程的联合模型的共同缺点.本文聚焦基于深度学习的实体关系联合抽取技术,根据近年来实体关系联合抽取前沿研究成果,总结了实体关系联合抽取模型的主流构建方法.按照建模思想的特点总结为三种建模方法:多模块-多步骤、多模块-单步骤以及单模块-单步骤.多模块-多步骤建模方法主要包含实体域映射关系域、关系域映射实体域和头实体域映射关系-尾实体域这三种类别.这三类模型的共同特点都是将三元组的提取过程分为多个模块,通过共享参数的方式整合各个模块,逐步迭代得到三元组.这种方法推动联合模型性能提升,初步解决了流水线方法存在的问题.但每个步骤使用独立的解码算法,导致解码误差累积问题.且共享参数整合各个模块的冗余误差会互相影响预测性能,从而产生级联冗余问题.多模块-单步骤建模方法旨在构建一个最优化的联合解码算法,并对其求取最优解进而得到最优超参数.这种方法设计了简单精确的联合解码算法,并加强了多个子模块间的交互性,减弱了因为逐步迭代导致的解码误差和级联冗余对联合模型性能的影响.然而,模块的分离依然会产生冗余错误,具有一定局限性.单模块-单步骤建模方法可以直接从文本语句中抽取三元组,有效缓解了多模块-多步骤和多模块-单步骤建模方法的级联错误和实体冗余等问题.本文以前沿文献中具有代表性的联合模型为例,详细分析了这些模型的建模思路,剖析了各个模型的优缺点,将多个具有共同建模思路的经典模型进行归类,以阐述实体关系联合抽取模型的发展趋势.本文将单模块-单步骤建模方法的代表模型在公开基准数据集上的模型性能与多模块-多步骤和多模块-单步骤的代表模型性能进行对比分析,阐明实体关系联合抽取模型的建模思路正在从基于多模块-多步骤和多模块-单步骤的复杂建模方法,逐渐向单模块-单步骤的高效建模方法转变的客观趋势.最后,本文对三个实体关系联合抽取的研究方向进行了展望.当下主流的联合模型聚焦于限定域的实体关系抽取任务,对于开放域问题研究得不够.开放域实体关系联合抽取任务是未来的研究人员亟待解决的问题之一.在实际工业应用中,文本语料包含多元信息,如时序信息.而当前的实体关系联合抽取模型大多依据单一文本上下文信息进行特征抽取,从而忽略了时序信息.若融入像时序信息这样的多元信息或能进一步提升联合模型性能,这是未来一项具有重大意义的课题.此外,对于跨文本的实体关系联合抽取模型研究较少,这也是该领域未来的一个研究趋势.本文旨在建立一个完整的基于深度学习的实体关系联合抽取领域研究视图,以对相关领域研究者有所帮助. 展开更多
关键词 信息抽取 知识图谱 深度学习 实体关系联合抽取 流水线方法
下载PDF
语义与句法信息加强的二元标记实体关系联合抽取 被引量:4
10
作者 衡红军 苗菁 《计算机工程》 CAS CSCD 北大核心 2023年第4期77-84,共8页
随着互联网技术不断地发展,数据信息呈爆炸性增长,迫切需要从海量数据中高效地提取关键信息,而实体关系抽取作为信息抽取的核心任务,发挥着不可替代的重要作用。现有基于深度学习的实体关系抽取方法存在误差累积、实体冗余、交互缺失、... 随着互联网技术不断地发展,数据信息呈爆炸性增长,迫切需要从海量数据中高效地提取关键信息,而实体关系抽取作为信息抽取的核心任务,发挥着不可替代的重要作用。现有基于深度学习的实体关系抽取方法存在误差累积、实体冗余、交互缺失、实体关系重叠等问题。为充分利用语句的语义信息和句法信息,提出一种加强语义信息与句法信息的二元标记实体关系联合抽取模型SSERel。通过对输入文本进行BERT编码,并对三元组主体的开始位置和结束位置进行预测标记,提取文本的全局语义特征、主体与每个词语的局部语义特征以及句法特征,并将其融合进编码向量。对语句每种关系的客体位置进行预测标记,最终完成三元组的提取。在NYT和WebNLG数据集上的实验结果表明,相比CasRel模型,该模型的F1值分别提升2.7和1.4个百分点,能够有效解决复杂数据中存在的重叠三元组和多三元组等问题。 展开更多
关键词 信息抽取 实体关系联合抽取 语义信息 句法依存分析 图卷积神经网络
下载PDF
融合语义和句法图神经网络的实体关系联合抽取 被引量:3
11
作者 衡红军 苗菁 《计算机科学》 CSCD 北大核心 2023年第9期295-302,共8页
实体关系抽取任务是信息抽取的核心任务,它对于有效地从爆炸性增长的数据中提取出关键性的信息有着不可替代的作用,也是构建大规模知识图谱的基础任务,因此研究实体关系抽取对各种自然语言处理任务具有重要意义。尽管现有的基于深度学... 实体关系抽取任务是信息抽取的核心任务,它对于有效地从爆炸性增长的数据中提取出关键性的信息有着不可替代的作用,也是构建大规模知识图谱的基础任务,因此研究实体关系抽取对各种自然语言处理任务具有重要意义。尽管现有的基于深度学习方法的实体关系抽取已经有了很成熟的理论和较好的性能,但依然还存在着误差累积、实体冗余、交互缺失、三元组重叠等问题。语义信息和句法信息对自然语言处理任务都具有重要作用,为了充分利用这些信息以解决上述提到的问题,提出了一种融合语义和句法图神经网络的二元标记实体关系联合抽取模型FSSRel(Fusion of Semantic and Syntactic Graph Convolutional Networks Binary Tagging Framework for Relation triple extraction)。该模型分为三个阶段进行:第一阶段,对三元组主体的开始结束位置进行预测标记;第二阶段,分别通过语义图神经网络和句法图神经网络提取语义特征和句法特征,并将其融合进编码向量;第三阶段,对语句的每种关系的客体位置进行预测标记,完成最终三元组的提取。实验结果表明,在NYT数据集和WebNLG数据集上,该模型的F1值较基线模型分别提升了2.5%和1.6%,并且在拥有重叠三元组和多三元组等问题的复杂数据上也有良好的表现。 展开更多
关键词 实体关系联合抽取 语义信息 句法依存分析 图卷积神经网络
下载PDF
基于双集合预测网络的实体关系联合抽取模型 被引量:2
12
作者 彭晏飞 王瑞华 张睿思 《计算机科学与探索》 CSCD 北大核心 2023年第7期1690-1699,共10页
实体关系抽取任务旨在从非结构化文本中识别出实体和实体间的关系,是目前大规模知识图谱构建和更新的技术来源。在现有的实体关系联合抽取方法中,并行解码三元组的方法通过集合预测的方式高效生成三元组,然而这种方法忽略了实体与关系... 实体关系抽取任务旨在从非结构化文本中识别出实体和实体间的关系,是目前大规模知识图谱构建和更新的技术来源。在现有的实体关系联合抽取方法中,并行解码三元组的方法通过集合预测的方式高效生成三元组,然而这种方法忽略了实体与关系间、实体主客体间的交互,导致生成无效三元组。针对此问题,提出基于双集合预测网络的实体关系联合抽取模型。为了增强关系和实体之间的交互,采用双集合预测网络并行解码三元组,顺序生成三元组中实体信息和关系类型:第一个集合预测网络对三元组集合建模并解码出三元组内的主客体信息,第二个集合预测网络对融合了主客体信息的三元组嵌入集合建模并解码出主客体间的关系类型;针对实体主客体设计了一个实体过滤器,预测句子中实体间的主客体相关性并依照该结果过滤掉主客体相关性较低的三元组。在公开数据集纽约时报(NYT)和WebNLG上的实验结果表明,在编码器为BERT的情况下所提模型相较基线模型在准确率和F1指标上的效果更好,验证了该模型的有效性。 展开更多
关键词 实体关系联合抽取 双集合预测网络 实体过滤器 并行解码
下载PDF
词嵌入BERT-CRF玉米育种实体关系联合抽取方法 被引量:1
13
作者 李书琴 庞文婷 《农业机械学报》 EI CAS CSCD 北大核心 2023年第11期286-294,共9页
针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉... 针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉米育种语料表达特征,采用对实体边界、关系类别和实体位置信息同步标注的策略;其次,构建了嵌入词汇信息的BERT-CRF模型进行训练和预测,自建玉米育种知识词典,通过在BERT中嵌入词汇信息,融合字符特征和词汇特征,增强模型的语义能力,利用CRF模型输出全局最优标签序列,设计了实体关系三元组匹配算法(Entity and relation triple matching algorithm,ERTM),将标签进行匹配和映射来获取三元组;最后,为验证该方法的有效性,在玉米育种数据集上进行实验,结果表明,本文模型精确率、召回率和F1值分别为91.84%、95.84%、93.80%,与现有模型相比性能均有提升。说明该方法能够有效抽取玉米育种领域知识,为构建玉米育种知识图谱及其它下游任务提供数据基础。 展开更多
关键词 玉米育种 实体关系联合抽取 序列标注 BERT语言模型 词嵌入
下载PDF
基于BERT-CNN编码特征融合的实体关系联合抽取方法
14
作者 丁建立 苏伟 《中国民航大学学报》 CAS 2023年第2期47-53,共7页
针对现有实体关系抽取模型结构复杂且抽取效果欠佳的问题,提出基于预训练的BERT(bidirectional encoder representation from transformers)与CNN(convolutional neural network)编码特征融合的实体关系联合抽取方法。首先,基于BERT-CN... 针对现有实体关系抽取模型结构复杂且抽取效果欠佳的问题,提出基于预训练的BERT(bidirectional encoder representation from transformers)与CNN(convolutional neural network)编码特征融合的实体关系联合抽取方法。首先,基于BERT-CNN编码的句子向量预测主语的首尾位置;其次,将预测的首尾位置索引句子中的特征向量作为预测主语的首尾向量,再将预测的主语首尾向量采用乘积方式进行特征融合得到主语向量;然后,将主语向量与句子向量以乘积方式融合得到新的句子编码向量,进而指导不同关系下宾语首尾位置的预测,得到实体关系三元组。为了验证模型效果,将本模型与其他类似算法模型在NYT与WebNLG公开数据集上进行对比实验,其准确率、召回率均优于对比模型且F1值分别达到92.75%与93.19%。 展开更多
关键词 BERT CNN 特征融合 二分类 实体关系联合抽取 实体关系三元组
下载PDF
基于双向语义的中文实体关系联合抽取方法 被引量:8
15
作者 禹克强 黄芳 +1 位作者 吴琪 欧阳洋 《计算机工程》 CAS CSCD 北大核心 2023年第1期92-99,112,共9页
现有中文实体关系抽取方法通常利用实体间的单向关系语义特征进行关系抽取,然而仅靠单向语义特征并不能完全利用实体间的语义关系,从而使得实体关系抽取的有效性受到影响。提出一种基于双向语义的中文实体关系联合抽取方法。利用RoBERT... 现有中文实体关系抽取方法通常利用实体间的单向关系语义特征进行关系抽取,然而仅靠单向语义特征并不能完全利用实体间的语义关系,从而使得实体关系抽取的有效性受到影响。提出一种基于双向语义的中文实体关系联合抽取方法。利用RoBERTa预训练模型获取具有上下文信息的文本字向量表征,通过首尾指针标注识别句子中可能存在关系的实体。为了同时利用文本中的双向关系语义信息,将实体分别作为关系中的主体与客体来建立正负关系,并利用两组全连接神经网络构建正负关系映射器,从而对每一个输入实体同时从正关系与负关系的角度构建候选关系三元组。将候选关系三元组分别在正负关系下的概率分布序列与实体位置嵌入特征相结合,以对候选三元组进行判别,从而确定最终的关系三元组。在DuIE数据集上进行对比实验,结果表明,该方法的精确率与召回率优于MultiR、CoType等基线模型,其F1值达到0.805,相较基线模型平均提高了12.8%。 展开更多
关键词 实体关系联合抽取 双向关系语义 正负关系映射 全连接神经网络 预训练语言模型
下载PDF
地质领域文本实体关系联合抽取方法 被引量:4
16
作者 邱芹军 王斌 +4 位作者 徐德馨 马凯 谢忠 潘声勇 陶留锋 《高校地质学报》 CAS CSCD 北大核心 2023年第3期419-428,共10页
地质领域实体关系抽取是构建地质知识图谱的基础,对地质领域文本信息抽取与知识库构建具有重要的作用。针对地质领域实体关系复杂、缺少人工标注语料库等特点,提出了面向地质领域实体关系联合抽取模型,着重对多地质文本中存在的复杂重... 地质领域实体关系抽取是构建地质知识图谱的基础,对地质领域文本信息抽取与知识库构建具有重要的作用。针对地质领域实体关系复杂、缺少人工标注语料库等特点,提出了面向地质领域实体关系联合抽取模型,着重对多地质文本中存在的复杂重叠关系进行识别,避免传统流水线模型中由于实体识别错误造成级联误差。文章构建了高质量地质领域实体关系语料库,提出了基于预训练语言模型BERT(Bidirectional Encoder Representations from Transformers)和双向门控循环单元BiGRU(Bidirectional Gated Recurrent Units)与条件随机场CRF(Conditional Random Field)的序列标注模型,实现对实体关系的联合抽取。在构建数据集上进行了实验,结果表明,本文提出的联合抽取模型在实体关系抽取上的F1值达到0.671,验证了本文模型在地质实体关系抽取的有效性。 展开更多
关键词 地质领域 实体关系联合抽取 知识图谱 BERT BiGRU
下载PDF
融合注意力机制和指针标注的实体关系联合抽取方法 被引量:3
17
作者 唐楠楠 陈吉 +1 位作者 侯磊 王星 《小型微型计算机系统》 CSCD 北大核心 2023年第2期256-262,共7页
实体关系三元组是组成知识图谱的基本单位,其抽取的效果直接影响大型知识图谱的构建.针对目前多数关系抽取模型存在语义特征表达能力不足、实体关系发生重叠难以抽取等问题,本文提出了一种融合注意力机制和指针标注的实体关系联合抽取模... 实体关系三元组是组成知识图谱的基本单位,其抽取的效果直接影响大型知识图谱的构建.针对目前多数关系抽取模型存在语义特征表达能力不足、实体关系发生重叠难以抽取等问题,本文提出了一种融合注意力机制和指针标注的实体关系联合抽取模型.模型采用预训练语言模型BERT训练词向量,利用多头注意力机制获取丰富的语义特征信息,通过指针标注抽取主语,然后采用改进的层归一化将主语特征作为条件信息与句子向量进行特征融合来增强模型表达能力,最终在预定义的关系条件下抽取主语对应的宾语,通过分层的指针标注处理重叠问题.本文使用公开数据集NYT和WebNLG进行测试,实验结果表明该模型在两个数据集上的F1值相比基线模型分别提高了2.5%和0.9%,可有效提升三元组抽取效果,并在一定程度上解决了三元组重叠问题. 展开更多
关键词 知识图谱 实体关系联合抽取 BERT 注意力机制 指针标注
下载PDF
基于森林的实体关系联合抽取模型
18
作者 王炫力 靳小龙 +2 位作者 侯中妮 廖华明 张瑾 《计算机应用》 CSCD 北大核心 2023年第9期2700-2706,共7页
嵌套实体对实体关系联合提取任务提出了挑战。现有的联合抽取模型在处理嵌套实体时存在产生大量负例且复杂度高的问题,此外未考虑嵌套实体对三元组预测的干扰。针对以上问题,提出一种基于森林的实体关系联合抽取方法——EF2LTF(Entity F... 嵌套实体对实体关系联合提取任务提出了挑战。现有的联合抽取模型在处理嵌套实体时存在产生大量负例且复杂度高的问题,此外未考虑嵌套实体对三元组预测的干扰。针对以上问题,提出一种基于森林的实体关系联合抽取方法——EF2LTF(Entity Forest to Layering Triple Forest)。EF2LTF采用了一个两阶段的联合训练框架,首先通过生成实体森林灵活地在嵌套实体内部识别不同的实体;然后结合已识别出的嵌套实体及其层次结构生成分层的三元组森林。在四个标准数据集上的实验结果表明,与基于集合预测网络的SPN(Set Prediction Network)模型、基于跨度的实体关系联合抽取模型SpERT(Span-based Entity and Relation Transformer)和动态图增强信息抽取(DyGIE++)等方法相比,所提方法取得了最优的F1值。说明所提方法既增强了嵌套实体的识别能力,也增强了构建三元组时对嵌套实体的分辨能力,从而提升了实体与关系的联合抽取性能。 展开更多
关键词 实体关系联合抽取 三元组生成 嵌套实体 分层预测 实体森林
下载PDF
融合双阶段解码的实体关系联合抽取方法 被引量:3
19
作者 常思杰 林浩田 江静 《计算机工程与应用》 CSCD 北大核心 2023年第20期138-146,共9页
在现有的实体关系联合抽取任务中,级联解码的方法直接对三元组进行优化,解决了一部分重叠问题,但是在特定关系下解码的实体,造成实体识别不平衡问题。仅用集合预测的方法可以同时解码出实体和关系,虽然解决了三元组的顺序问题,但也导致... 在现有的实体关系联合抽取任务中,级联解码的方法直接对三元组进行优化,解决了一部分重叠问题,但是在特定关系下解码的实体,造成实体识别不平衡问题。仅用集合预测的方法可以同时解码出实体和关系,虽然解决了三元组的顺序问题,但也导致实体之间联系性不强、实体和关系之间交互性差的问题。为了进一步提高联合抽取模型的效果,提出一种融合双阶段解码的实体关系联合抽取模型,包括级联策略下的实体解码与集合预测网络阶段的关系解码。该模型分为三个部分:采用Bert进行编码,有效关注到了上下文的信息;采用级联解码的策略先对实体识别,得到不受关系限制的实体信息,充分识别实体;将融合了实体信息的表示嵌入集合预测网络解码出实体-关系三元组,加强实体与关系的联系。在公开数据集纽约时报(The New York Times,NYT)、WebNLG和ACE2005上的实验结果表明,所提出的模型基本优于基线模型,验证了该模型的有效性。 展开更多
关键词 实体关系联合抽取 重叠问题 级联解码 集合预测
下载PDF
融合FGM和指针标注的实体关系联合抽取方法
20
作者 刘玉鹏 葛艳 +1 位作者 杜军威 陈卓 《计算机与现代化》 2023年第11期1-5,12,共6页
实体关系联合抽取是信息抽取的一项重要任务。由于传统的实体关系联合抽取方法把实体之间的关系建模为离散类型,因此不能很好地解决重叠三元组的问题。为了解决难以抽取重叠三元组的问题,本文提出一种融合FGM和指针标注的实体关系联合抽... 实体关系联合抽取是信息抽取的一项重要任务。由于传统的实体关系联合抽取方法把实体之间的关系建模为离散类型,因此不能很好地解决重叠三元组的问题。为了解决难以抽取重叠三元组的问题,本文提出一种融合FGM和指针标注的实体关系联合抽取BERT-FGM模型。该模型将实体之间的关系建模为函数,通过在BERT训练词向量的过程中融入FGM提高模型的鲁棒性。模型首先通过指针标注策略抽取头实体,然后将头实体与句子向量进行融合作为一个新向量,最终将其在预定义的关系条件下抽取头实体对应的尾实体。实验使用的是公开数据集WebNLG,实验结果表明该模型F1值达到90.7%,有效地解决了三元组重叠问题。 展开更多
关键词 实体关系联合抽取 重叠三元组 BERT FGM 指针标注
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部