为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声...为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声波传感器获取定位基站与被控定位单元之间的距离特征,利用角度传感器获取被控定位单元相对于定位基站的角度特征,以单基站就实现了精确的室内定位过程.分析了该系统基本结构与原理,建立定位与控制模型,在一定范围内对其定点定位精度与跟随定位精度进行了实验验证.实验结果表明:该系统结构简单,易于安装布置,鲁棒性强,在测试范围内的最大定点定位误差不超过5 cm,跟随定位误差不超过15 cm.展开更多
随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数...随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数据间的概率分布不同。传统定位模型在面对不同分布的训练数据和测试数据时无法保证具有良好的定位精度,常出现算法定位精度大幅降低,甚至算法不可用等问题。面对这一难点,迁移学习中的域适应方法作为一种可以有效解决训练样本和测试样本概率分布不一致的学习问题被广泛应用于室内定位领域。文中结合域适应学习和机器学习算法,提出了一种基于特征迁移的室内定位算法(Transfer Learning Location AlgorithmBased on Global and Local Metrics Adaptation,TL-GLMA)。TL-GLMA在定位阶段通过特征迁移方式将两域原始数据映射至高维空间,从而在最小化两域数据的分布差异的同时保留两域数据内部的局部几何属性,并利用映射后的独立同分布数据训练分类器,从而实现目标定位。实验结果表明,TL-GLMA能够有效减少环境变化带来的干扰,提升定位精度。展开更多
在室内定位系统中,基于Wi-Fi技术的定位精度很大程度上依赖于信号的稳定,信号的多径效应与非视距(Non Line of Sight,NLOS)会增大定位误差。行人航位推算(Pedestrian Dead Reckoning,PDR)定位系统会因传感器自身误差与噪声产生累计误差...在室内定位系统中,基于Wi-Fi技术的定位精度很大程度上依赖于信号的稳定,信号的多径效应与非视距(Non Line of Sight,NLOS)会增大定位误差。行人航位推算(Pedestrian Dead Reckoning,PDR)定位系统会因传感器自身误差与噪声产生累计误差。针对上述问题,提出了一种改进的PDR与最小一乘法(Least Absolute Deviation,LAD)融合的室内定位算法。该算法基于模糊逻辑将PDR算法的步长固定参数改进为变量参数,同时根据LAD的定位结果对PDR进行周期性位置与拐点位置校正,选择扩展卡尔曼滤波(Extend Kalman Filter,EKF)将改进的PDR与LAD进行融合,以降低PDR的累计误差与LAD的突变误差,提高定位精度。实验结果表明:所提方法较其他方法具有更高的定位精度。展开更多
文摘为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声波传感器获取定位基站与被控定位单元之间的距离特征,利用角度传感器获取被控定位单元相对于定位基站的角度特征,以单基站就实现了精确的室内定位过程.分析了该系统基本结构与原理,建立定位与控制模型,在一定范围内对其定点定位精度与跟随定位精度进行了实验验证.实验结果表明:该系统结构简单,易于安装布置,鲁棒性强,在测试范围内的最大定点定位误差不超过5 cm,跟随定位误差不超过15 cm.
文摘随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数据间的概率分布不同。传统定位模型在面对不同分布的训练数据和测试数据时无法保证具有良好的定位精度,常出现算法定位精度大幅降低,甚至算法不可用等问题。面对这一难点,迁移学习中的域适应方法作为一种可以有效解决训练样本和测试样本概率分布不一致的学习问题被广泛应用于室内定位领域。文中结合域适应学习和机器学习算法,提出了一种基于特征迁移的室内定位算法(Transfer Learning Location AlgorithmBased on Global and Local Metrics Adaptation,TL-GLMA)。TL-GLMA在定位阶段通过特征迁移方式将两域原始数据映射至高维空间,从而在最小化两域数据的分布差异的同时保留两域数据内部的局部几何属性,并利用映射后的独立同分布数据训练分类器,从而实现目标定位。实验结果表明,TL-GLMA能够有效减少环境变化带来的干扰,提升定位精度。
文摘在室内定位系统中,基于Wi-Fi技术的定位精度很大程度上依赖于信号的稳定,信号的多径效应与非视距(Non Line of Sight,NLOS)会增大定位误差。行人航位推算(Pedestrian Dead Reckoning,PDR)定位系统会因传感器自身误差与噪声产生累计误差。针对上述问题,提出了一种改进的PDR与最小一乘法(Least Absolute Deviation,LAD)融合的室内定位算法。该算法基于模糊逻辑将PDR算法的步长固定参数改进为变量参数,同时根据LAD的定位结果对PDR进行周期性位置与拐点位置校正,选择扩展卡尔曼滤波(Extend Kalman Filter,EKF)将改进的PDR与LAD进行融合,以降低PDR的累计误差与LAD的突变误差,提高定位精度。实验结果表明:所提方法较其他方法具有更高的定位精度。