期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
基于自适应宽度学习算法的城市污水处理污泥膨胀识别
1
作者 何政 李杰 +5 位作者 赵楠 陈行行 阜崴 顾剑 韩红桂 刘峥 《控制工程》 CSCD 北大核心 2024年第10期1856-1861,共6页
针对污水处理过程的污泥膨胀难以精准识别的问题,提出了一种基于自适应宽度学习算法(adaptive broad learning algorithm,ABLA)的污泥膨胀识别方法。首先,结合城市污水处理过程的运行数据,采用主元分析法选取与污泥体积指数(sludge volu... 针对污水处理过程的污泥膨胀难以精准识别的问题,提出了一种基于自适应宽度学习算法(adaptive broad learning algorithm,ABLA)的污泥膨胀识别方法。首先,结合城市污水处理过程的运行数据,采用主元分析法选取与污泥体积指数(sludge volume index,SVI)相关的特征变量;其次,建立了一种基于ABLA的污泥膨胀识别模型,利用自适应伪逆算法更新模型参数,提高了识别精度,并验证了模型的收敛性;最后,将所提模型应用于实际的污水处理过程中,利用污水处理厂的实际运行数据对其进行实验验证。实验结果表明,基于ABLA的污泥膨胀识别模型能够实现污泥膨胀的精准识别。 展开更多
关键词 城市污水处理 污泥膨胀 自适应宽度学习算法 识别
下载PDF
基于双向门控式宽度学习系统的监测数据结构变形预测
2
作者 罗向龙 王亚飞 +1 位作者 王彦博 王立新 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第4期729-736,共8页
监测数据深度学习预测模型运算量大、实时性差,为此结合宽度学习系统(BLS)和双向长短时记忆(Bi-LSTM)模型的优势,提出基于双向门控式宽度学习系统(Bi-G-BLS)的结构变形预测模型.对BLS的特征节点增加循环反馈和遗忘门结构,提高当前节点... 监测数据深度学习预测模型运算量大、实时性差,为此结合宽度学习系统(BLS)和双向长短时记忆(Bi-LSTM)模型的优势,提出基于双向门控式宽度学习系统(Bi-G-BLS)的结构变形预测模型.对BLS的特征节点增加循环反馈和遗忘门结构,提高当前节点对前一节点的依赖关系,分别从正向和反向提取时间序列的内部特征,充分挖掘数据的双向特征,在提高模型预测精确度的同时减少模型预测时间.基于实测的地铁基坑沉降监测数据的测试结果显示,所提预测模型与门控循环单元(GRU)、BLS、Bi-LSTM、G-BLS模型相比,均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)平均分别降低了21.04%、12.81%、24.41%;在预测精度相近的情况下,所提模型的预测时间比Bi-LSTM模型降低了99.59%.结果表明,所提模型在预测速度和精确度上较对比模型有明显提升. 展开更多
关键词 结构变形 预测模型 深度学习 门控循环单元(GRU) 宽度学习系统(BLS)
下载PDF
基于K-means与宽度学习的肺炎图像分类算法
3
作者 程立英 谷利茹 +3 位作者 晏旻 管文印 王晓伟 张志美 《沈阳师范大学学报(自然科学版)》 CAS 2024年第4期334-339,共6页
随着人们日常生活中肺部疾病风险的增加,肺部病变筛查变得至关重要。通过CT图像快速辅助诊断肺炎可以有效遏制病情。针对现有的肺部CT图像辅助诊断方法存在数据标记量大、训练数据耗时长以及对医疗设备计算量和内存要求高等问题,提出基... 随着人们日常生活中肺部疾病风险的增加,肺部病变筛查变得至关重要。通过CT图像快速辅助诊断肺炎可以有效遏制病情。针对现有的肺部CT图像辅助诊断方法存在数据标记量大、训练数据耗时长以及对医疗设备计算量和内存要求高等问题,提出基于K-means与宽度学习的肺炎图像分类算法。该算法引入K-means使宽度学习系统更好地提取肺部CT图像特征,缓解随机获得节点权值的性能局限,建立与典型特征学习相关的宽度学习模型,并将算法针对公开数据集进行相关实验。实验结果表明,该模型较深度学习模型的计算量大大减小,在训练速度方面有明显优势,同时也保证了较好的分类结果,极大地降低了诊断时间;在数据有限的情况下,改进后的方法与现有主流方法相比获得了更加精确的肺炎诊断结果,提出的算法更适于嵌入医学设备等资源有限的硬件系统中。 展开更多
关键词 肺炎诊断 CT图像 K-MEANS 宽度学习
下载PDF
基于动态图特征的堆叠宽度学习三维物体识别网络 被引量:1
4
作者 李威林 孙叶 宋伟 《激光杂志》 CAS 北大核心 2024年第6期161-166,共6页
三维物体点云识别是智能机器人环境感知任务中的重要组成部分。提出一种基于动态图特征的堆叠宽度学习三维物体识别网络(DG-S-BLS),利用动态图卷积网络提取点云的高维特征,通过宽度学习系统(BLS)模型依据样本整体特征对点云分类,再通过... 三维物体点云识别是智能机器人环境感知任务中的重要组成部分。提出一种基于动态图特征的堆叠宽度学习三维物体识别网络(DG-S-BLS),利用动态图卷积网络提取点云的高维特征,通过宽度学习系统(BLS)模型依据样本整体特征对点云分类,再通过基于BLS块间残差的堆叠宽度学习系统模型进一步提高分类精度。在Li DARNet户外点云数据集上的实验结果表明,DG-S-BLS的分类准确率可达99.5%。 展开更多
关键词 宽度学习系统 点云识别 动态图卷积网络
下载PDF
基于多层次云图特征与宽度学习的超短期光伏功率预测
5
作者 陈殿昊 臧海祥 +3 位作者 蒋雨楠 刘璟璇 孙国强 卫志农 《电力系统自动化》 EI CSCD 北大核心 2024年第22期131-139,共9页
针对现有研究云图信息利用不充分、爬坡功率预测误差较大而导致超短期光伏功率预测性能提升受限的问题,提出一种基于多层次云图特征与宽度学习的超短期光伏功率预测方法。首先,提取地基云图的多层次特征作为功率预测模型的图像特征量;同... 针对现有研究云图信息利用不充分、爬坡功率预测误差较大而导致超短期光伏功率预测性能提升受限的问题,提出一种基于多层次云图特征与宽度学习的超短期光伏功率预测方法。首先,提取地基云图的多层次特征作为功率预测模型的图像特征量;同时,引入云层覆盖率与云层变化率作为爬坡识别模型的图像特征量。其次,结合历史功率数据,构建基于宽度学习的光伏功率预测模型与爬坡识别模型。最后,若爬坡识别结果为非爬坡事件,则直接应用功率预测模型得到预测结果;反之,则使用与爬坡事件相关的历史数据对功率预测模型进行增量更新,并基于更新后的功率预测模型得到预测结果。实验结果表明,所提出的方法能够有效提高超短期光伏功率的预测精度。 展开更多
关键词 光伏功率预测 云图 宽度学习 增量学习 爬坡事件
下载PDF
基于注意力机制和微分跟踪器的宽度学习系统
6
作者 廖律超 邹伟东 +3 位作者 杨佳龙 卢辉煌 夏元清 高建磊 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第5期583-593,共11页
宽度学习系统(broad learning system,BLS)具有模型结构简单、训练效率高、易于解释等优势,但存在特征学习能力不足以及泛化性能不稳定的缺点.为缓解此问题,提出一种基于自注意力机制和微分跟踪器(tracking differentiator,TD)的宽度学... 宽度学习系统(broad learning system,BLS)具有模型结构简单、训练效率高、易于解释等优势,但存在特征学习能力不足以及泛化性能不稳定的缺点.为缓解此问题,提出一种基于自注意力机制和微分跟踪器(tracking differentiator,TD)的宽度学习系统,记为A-TD-BLS.在模型结构上,A-TD-BLS在原始BLS模型的基础上引入了自注意力机制,通过注意力加权的方式对提取到的特征进行进一步的融合与变换,以提高原始BLS的特征学习能力.在训练算法上,提出一种基于TD的权重优化算法,通过限制权重值的大小有效地缓解了原始BLS模型的过拟合现象,显著降低了模型中隐藏层节点数量对模型性能的影响,使得模型泛化性能更加稳定.将该训练算法扩展到BLS模型的增量学习框架中,使得改进模型可以通过动态增加隐藏层节点的方式提升性能.在基准数据集上对A-TD-BLS进行多项试验,结果显示,相比原始BLS模型,在分类数据集上A-TD-BLS模型的分类准确率平均提升了1.27%,在回归数据集上A-TD-BLS模型的均方根误差平均降低了0.53,并且A-TD-BLS模型的泛化性能受隐藏层节点数量影响更小.A-TD-BLS模型提升了原始BLS模型泛化性能的稳定性,降低了模型性能对超参数的敏感程度,能够有效抑制过拟合现象. 展开更多
关键词 人工智能 宽度学习 自注意力机制 微分跟踪器 特征提取 增量学习
下载PDF
融合 OCEEMDAN的多模态互量纲一化与宽度学习改进的智能故障诊断
7
作者 李春林 陈滢 +3 位作者 胡钦太 柳琼青 熊建斌 张清华 《机床与液压》 北大核心 2024年第8期179-188,共10页
滚动轴承作为旋转机械的重要组成部分,在恶劣环境运行导致振动信号具有非线性和非平稳的特点,使得区分故障信号和正常信号变得困难。针对此,提出一种结合多模态互量纲一化(MMDI)与宽度学习系统(BLS)的智能故障诊断方法。通过优化完全自... 滚动轴承作为旋转机械的重要组成部分,在恶劣环境运行导致振动信号具有非线性和非平稳的特点,使得区分故障信号和正常信号变得困难。针对此,提出一种结合多模态互量纲一化(MMDI)与宽度学习系统(BLS)的智能故障诊断方法。通过优化完全自适应噪声集合经验模态(OCEEMDAN)与小波阈值对轴承观测信号进行分解处理,对有效的本征模态函数(IMF)重构并提取MDI,构建了一批MMDI;采用反向传播算法(BP)与堆叠模块方式优化BLS,改进的BLS算法能够快速识别不同的故障类型;最后通过凯斯西储大学轴承数据中心与某实验室提供的轴承数据集对所提方法进行验证,平均准确率分别为99.8%与100%,验证了方法的有效性。 展开更多
关键词 完全自适应噪声集合经验模态分解(CEEMDAN) 特征提取 互量纲一化指标 宽度学习系统(BLS) 故障诊断
下载PDF
宽度学习系统中鲁棒性权值矩阵组合的筛选方法
8
作者 汪韩 万源 +1 位作者 王东 丁义明 《计算机应用》 CSCD 北大核心 2024年第10期3032-3038,共7页
宽度学习系统(BLS)具有出色的计算效率和预测准确性;然而,在传统BLS框架中,权值矩阵采用随机生成的方式,存在学习结果不稳定的风险。因此,设计一种BLS中鲁棒性权值矩阵组合的筛选方法(RWS-BLS)。首先,通过4组函数数据的验证,揭示随机权... 宽度学习系统(BLS)具有出色的计算效率和预测准确性;然而,在传统BLS框架中,权值矩阵采用随机生成的方式,存在学习结果不稳定的风险。因此,设计一种BLS中鲁棒性权值矩阵组合的筛选方法(RWS-BLS)。首先,通过4组函数数据的验证,揭示随机权值矩阵在样本整体训练误差上的显著差异性;其次,研究权值矩阵组合的形式,放宽筛选条件的严格最优限制,将最优转换为较优,并将误差最小值限定在指定范围内,定义精英组合等条件;最后,得到可靠的权值矩阵的组合,有效降低随机性影响,并建立稳健的模型。实验结果表明,在16组模拟数据、NORB数据集和5组UCI回归数据集上,在数据更换或受噪声扰动的情况下,与BLS方法相比,所提方法的均方误差(MSE)下降了7.32%、8.73%和1.63%。RWS-BLS为BLS提供了一种模型平稳性研究的方向,提高了含有随机参数模型的效率和稳定性,并对涉及随机参数的其他机器学习方法具有借鉴作用。 展开更多
关键词 宽度学习系统 权值矩阵组合 特征节点 增强节点 鲁棒性分析
下载PDF
一种基于宽度学习系统变体结构的肺炎检测方法
9
作者 黎珂源 张清华 +1 位作者 靳朋仁 谢秦 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期665-676,共12页
肺炎作为常见的呼吸系统疾病,准确、快速地诊断对患者的健康恢复至关重要。随着医疗技术的革新和人工智能的发展,计算机辅助诊断在医学领域的应用日益广泛。深度学习在肺炎检测领域取得了显著的成果,但其庞大的参数数量和复杂的网络结... 肺炎作为常见的呼吸系统疾病,准确、快速地诊断对患者的健康恢复至关重要。随着医疗技术的革新和人工智能的发展,计算机辅助诊断在医学领域的应用日益广泛。深度学习在肺炎检测领域取得了显著的成果,但其庞大的参数数量和复杂的网络结构导致训练时间长、计算资源消耗大等局限性。为了解决上述问题,提出了一种基于宽度学习系统变体结构的肺炎检测方法。该方法在原始宽度学习系统的基础上,引入了级联金字塔结构;同时,利用预训练的EfficientNet网络作为前置特征提取器;此外,还提出了适用于该模型的增量学习算法,包括增加额外的增强节点、特征节点和训练样本,以进一步优化模型性能;最后,在公开的肺炎胸部X射线数据集上进行了对比实验。实验结果表明,该方法实现了92.83%的准确率,AUC值高达98.86%,与众多深度卷积神经网络相比,具有相似的精度,同时大幅缩短了模型的训练时间。 展开更多
关键词 肺炎检测 宽度学习系统 级联金字塔 增量学习
下载PDF
融合AP聚类算法和宽度学习系统的分布外硬盘故障预测
10
作者 王屹阳 刘发贵 +1 位作者 彭玲霞 钟国祥 《计算机科学》 CSCD 北大核心 2024年第8期63-74,共12页
硬盘是云数据中心最主要的存储设备,硬盘故障预测是保障数据安全的重要手段。但是,硬盘的故障与健康样本之间存在着极端的数量不平衡问题,这会导致模型偏差;此外,不同型号的硬盘数据分布存在一定的差异,在特定硬盘数据上训练的模型往往... 硬盘是云数据中心最主要的存储设备,硬盘故障预测是保障数据安全的重要手段。但是,硬盘的故障与健康样本之间存在着极端的数量不平衡问题,这会导致模型偏差;此外,不同型号的硬盘数据分布存在一定的差异,在特定硬盘数据上训练的模型往往不适用于其他硬盘。对于这两个问题,文中提出了一种融合AP聚类算法和宽度学习系统的分布外硬盘故障预测方法。针对样本不平衡问题,文中使用AP聚类算法对硬盘故障出现前一阶段的样本集进行聚类,将与故障样本处于同一聚类簇的样本扩充为故障样本。针对不同型号硬盘分布存在差异的问题,文中结合流形正则化框架和宽度学习系统来学习硬盘数据的低维结构,提高模型对未知分布数据的泛化能力。实验结果表明,在AP聚类算法重采样的样本集上,相较于用于对比的重采样方法得到的样本集,多种故障预测方法的F1_Score取得了平均0.2的提升。此外,在分布外硬盘故障预测任务上,所提模型的F1_Score相比对比方法提升了0.1~0.2。 展开更多
关键词 硬盘故障预测 类不平衡 分布外泛化 AP聚类 宽度学习系统 流形学习
下载PDF
基于宽度学习的航天器编队分布式姿态协同容错控制
11
作者 俞鑫丽 易辉 《航天控制》 CSCD 2024年第3期54-60,共7页
针对具有惯性不确定和执行器故障的航天器编队姿态协同控制问题,利用宽度学习系统的逼近特性对系统的广义扰动和执行器故障进行估计,同时采用迟滞量化器对控制力矩信号进行量化,以降低对通信速率的要求,并减少抖振现象。在此基础上,提... 针对具有惯性不确定和执行器故障的航天器编队姿态协同控制问题,利用宽度学习系统的逼近特性对系统的广义扰动和执行器故障进行估计,同时采用迟滞量化器对控制力矩信号进行量化,以降低对通信速率的要求,并减少抖振现象。在此基础上,提出一种基于模型预测控制和快速非奇异积分终端滑模的复合结构容错控制器。利用代数图论和Lyapunov理论分析了闭环姿态系统的稳定性。最后,通过仿真验证了本文提出的控制方法与现有方法相比的优越性。 展开更多
关键词 航天器编队 姿态跟踪 容错控制 模型预测控制 输入量化 宽度学习系统
下载PDF
基于加权宽度学习的异常用电辨识研究
12
作者 姚影 陆俊 +3 位作者 肖琦 龚钢军 徐志强 辛培哲 《电网技术》 EI CSCD 北大核心 2024年第5期2095-2102,I0075,I0076-I0083,共17页
针对异常用电与正常用电样本类别不平衡关系及现有模型训练耗时、缺乏可扩展性的问题,提出一种基于加权宽度学习(weighted broad learning system,WBLS)的异常用电辨识模型。首先,考虑到样本间类别不平衡关系,在目标函数中使用样本权重... 针对异常用电与正常用电样本类别不平衡关系及现有模型训练耗时、缺乏可扩展性的问题,提出一种基于加权宽度学习(weighted broad learning system,WBLS)的异常用电辨识模型。首先,考虑到样本间类别不平衡关系,在目标函数中使用样本权重约束每个类对模型的贡献,样本权重根据样本分布情况个性化赋予,并通过岭回归广义逆高效地建立WBLS辨识模型。其次,基于新增加的用电样本数据,通过增量学习算法对模型进行更新和重构。实验结果表明该模型提高了对异常用电样本的辨识精度,并在增加用电样本的情况下,可以快速地对旧模型进行更新和扩展。 展开更多
关键词 异常用电 加权宽度学习 类不平衡 增量学习
下载PDF
基于鲁棒稀疏宽度学习系统的短期风电功率预测
13
作者 康逸群 刘厦 雷兢 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期32-43,共12页
为改善预测质量,提出一种基于鲁棒稀疏宽度学习系统(RSBLS)的预测方法。基于正则法将模型训练转化为一个difference-of-convex functions优化问题,利用L1范数作为数据忠诚项以提高估计的鲁棒性,将L1-2范数集成到目标函数中确保输出权的... 为改善预测质量,提出一种基于鲁棒稀疏宽度学习系统(RSBLS)的预测方法。基于正则法将模型训练转化为一个difference-of-convex functions优化问题,利用L1范数作为数据忠诚项以提高估计的鲁棒性,将L1-2范数集成到目标函数中确保输出权的稀疏性以提升模型性能,并提出一种融合half-quadratic splitting算法优势的数值方法有效求解该训练模型。基于绝对误差、相对误差、平均绝对误差、均方根误差、平均绝对百分误差、算法稳定性、预测误差改进百分比、灰色关联分析和DM检验等准则进行实验分析,结果表明新算法的预测质量优于流行的预测算法,并具有较好的鲁棒性,为风功率预测提出一种可行的新方法。 展开更多
关键词 风功率预测 宽度学习系统 正则化 稀疏性优化
下载PDF
基于改进级联宽度学习的自适应认知诊断方法
14
作者 陈锦 林江豪 +1 位作者 阳爱民 李心广 《郑州大学学报(理学版)》 CAS 北大核心 2024年第4期88-94,共7页
针对现有的认知诊断模型信息利用不充分以及依赖局部作答信息而导致诊断精度低的问题,提出了基于改进级联宽度学习的自适应认知诊断方法。首先,提取题目的语义、参数等特征,采用无偏差加权进行融合。其次,提出了改进的级联宽度学习系统(... 针对现有的认知诊断模型信息利用不充分以及依赖局部作答信息而导致诊断精度低的问题,提出了基于改进级联宽度学习的自适应认知诊断方法。首先,提取题目的语义、参数等特征,采用无偏差加权进行融合。其次,提出了改进的级联宽度学习系统(improved cascade of broad learning system,ICBLS),旨在学习全序列作答信息,利用残差结构解决长序列学习遗忘的问题,采用网格搜索法确定最优参数组合,进而构建认知诊断模型。最后,经过非线性分类器实现知识状态的分类。以BP神经网络、Bi-LSTM、Bi-GRU为基线模型,在实际的接受性任务中进行了实验验证。结果表明,基于ICBLS的模型获得的最高模式准确率为95.74%,平均属性准确率为98.31%。并且,通过消融实验证明了题目的语义信息有利于模型更准确地发现被试的语言理解能力。 展开更多
关键词 级联宽度学习 认知诊断 自适应测试 语义特征
下载PDF
基于级联宽度学习与麻雀算法的非侵入式负荷分解方法
15
作者 白星振 康家豪 +2 位作者 尚继伟 郝春蕾 王雪梅 《山东科技大学学报(自然科学版)》 CAS 北大核心 2024年第2期102-111,共10页
深度学习被广泛应用于非侵入式负荷分解中,其分解精度高但存在网络结构复杂、训练过程极度耗时等问题,并且对计算资源有一定要求,难以与嵌入式设备集成使用。对此,面向低频数据,提出一种基于级联宽度学习与麻雀算法的非侵入式负荷分解... 深度学习被广泛应用于非侵入式负荷分解中,其分解精度高但存在网络结构复杂、训练过程极度耗时等问题,并且对计算资源有一定要求,难以与嵌入式设备集成使用。对此,面向低频数据,提出一种基于级联宽度学习与麻雀算法的非侵入式负荷分解方法。首先,改进宽度学习特征节点的连接方式,构建各目标设备的级联宽度学习负荷分解网络。然后,通过麻雀搜索算法确定各目标设备分解网络的最优特征节点和增强节点数,实现负荷的高效分解。最后,基于实际数据集UK-DALE进行了仿真实验,通过与常用的非侵入式负荷分解方法进行比较,验证了所提方法的优越性。 展开更多
关键词 非侵入式 负荷分解 宽度学习 麻雀算法 特征节点级联
下载PDF
基于主成分分析和宽度学习系统的土壤铅镉重金属元素定量分析
16
作者 吕树彬 杨婉琪 李福生 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1852-1857,共6页
在土壤重金属元素定量分析研究中,X射线荧光分析(XRF)是一种有效的无损分析技术。由于受到矩阵效应以及元素干扰的影响,已有的机器学习方法在利用土壤XRF光谱预测铅(Pb)元素、镉(Cd)元素浓度时存在性能不足和不稳定的问题。该工作提出... 在土壤重金属元素定量分析研究中,X射线荧光分析(XRF)是一种有效的无损分析技术。由于受到矩阵效应以及元素干扰的影响,已有的机器学习方法在利用土壤XRF光谱预测铅(Pb)元素、镉(Cd)元素浓度时存在性能不足和不稳定的问题。该工作提出了基于主成分分析(PCA)结合宽度学习系统(BLS)的XRF土壤重金属元素定量分析方法(PCA-BLS),用于精确、高效、稳定测定土壤中Pb元素和Cd元素的浓度。使用PCA对56个标准土壤数据进行特征降维,并选取Pb和Cd的前3个主成分作为特征。将最优主成分特征输入宽度学习系统进行校正和测试,并使用网格搜索算法确定最佳网络结构。其中Pb元素和Cd元素对应的BLS的三个最优参数值分别为2,11,11和3,19,15。使用支持向量回归(SVR)、BP神经网络和原始BLS三种模型与PCA-BLS方法进行对比。PCA-BLS在测定Pb对应的决定系数R^(2)、均方根误差RMSE和平均绝对百分比误差MAPE三个指标上取得了0.954、1.433、1.014的结果,在定量Cd实验中取得R^(2)为0.982、RMSE为1.215和MAPE为1.059的精度。网格搜索可视化表明PCA-BLS在预测两种重金属元素时具有稳定的性能。实验结果表明,PCA-BLS可以有效校正土壤XRF光谱中的矩阵效应和干扰,在准确预测Pb和Cd元素浓度的同时保持模型稳定性,是一种具有潜力的XRF光谱定量分析方法。 展开更多
关键词 土壤重金属 XRF定量分析 宽度学习系统 主成分分析
下载PDF
基于宽度学习的头部姿态情绪识别算法
17
作者 闰文彬 周梦 张锐 《电子制作》 2024年第12期68-71,30,共5页
在情绪识别领域,对静态面部表情和语音信号的情绪分类已经相对成熟,但对姿态动作尤其是头部姿态这一单模态的情绪分类研究相对较少。本文提出了一种基于头部姿态欧拉角特征的宽度学习系统Broad Learning System(BLS)情绪识别算法。通过... 在情绪识别领域,对静态面部表情和语音信号的情绪分类已经相对成熟,但对姿态动作尤其是头部姿态这一单模态的情绪分类研究相对较少。本文提出了一种基于头部姿态欧拉角特征的宽度学习系统Broad Learning System(BLS)情绪识别算法。通过面部重要特征点定位的方法求取头部的三维欧拉角,在视频数据上构造头部姿态特征的时间序列然后利用BLS网络构建情绪识别模型。利用中科院自动化所发布的视频情绪数据集CHEAVD2.0(Chinese Natural Audio-Visual Emotion Database)对该模型进行了训练和验证。该模型结构简单,训练快速,实验结果表明头部姿态动作也包含了重要的人类情感信息,对情绪的识别有着重要影响,基于头部姿态欧拉角特征的BLS情绪识别模型在视频数据上对头部模态的情绪识别有着较高的准确率。 展开更多
关键词 情绪识别 头部姿态 宽度学习系统 欧拉角
下载PDF
基于宽度学习的发电功率智能时间序列预测算法
18
作者 汪涛 袁晓鹏 +1 位作者 申少辉 关英宇 《微型电脑应用》 2024年第7期114-117,共4页
发电功率预测受气象数据的影响较大,这可能导致功率预测值与实际值之间存在一定的偏差,为准确预测发电功率,提出基于宽度学习的发电功率智能时间序列预测算法。根据不同类型形成相应的数据集,分别对预测模型进行训练;使用模糊宽度学习... 发电功率预测受气象数据的影响较大,这可能导致功率预测值与实际值之间存在一定的偏差,为准确预测发电功率,提出基于宽度学习的发电功率智能时间序列预测算法。根据不同类型形成相应的数据集,分别对预测模型进行训练;使用模糊宽度学习替代原始的稀疏自动编码,利用时间序列模型进行非线性变换,利用非线性变换,形成增强节点层,并通过构造目标函数来建立发电功率预测模型;结合气象数据和宽度学习模型生成更可靠的数字孪生体功率预测结果。实验结果表明,该方法进行发电功率预测的归一化平均绝对误差为0.687%,归一化均方根误差为0.634%,相关系数为0.976,整体拟合程度较好,发电功率接近真实值,能够准确预测光伏发电功率,提供有价值的参考和决策支持。 展开更多
关键词 宽度学习 发电功率 时间序列 智能预测 SOM神经网络 聚类分析
下载PDF
近红外光谱技术结合宽度学习系统识别国外奶粉产地 被引量:3
19
作者 乔继红 苑希岩 +2 位作者 吴静珠 张慧妍 余乐 《食品安全质量检测学报》 CAS 北大核心 2023年第5期9-15,共7页
目的 利用傅里叶变换近红外光谱技术结合与宽度学习系统对国外奶粉进行产地识别。方法 采集荷兰、新西兰、澳大利亚、德国、法国、英国和爱尔兰7个国家55个奶粉样品的近红外光谱,经过数据预处理、主成分分析降低数据维度和特征筛选,构... 目的 利用傅里叶变换近红外光谱技术结合与宽度学习系统对国外奶粉进行产地识别。方法 采集荷兰、新西兰、澳大利亚、德国、法国、英国和爱尔兰7个国家55个奶粉样品的近红外光谱,经过数据预处理、主成分分析降低数据维度和特征筛选,构建基于宽度学习系统(broad learning system,BLS)的奶粉产地快速识别模型。结果 采用多元散射校正加Savitzky-Golay滤波的预处理效果最好,与未做预处理相比,准确率提高14.55%,主成分分析特征数大于38,识别效果最稳定。对荷兰、新西兰、澳大利亚和欧洲其他产地4类产地识别,测试准确率达到100.00%,对样本做7类产地识别,准确率达到81.81%。相同条件下,与支持向量机方法对比, 4类产地识别, BLS方法准确率比支持向量机方法高9.10%, 7类产地识别,两者准确率相同。结论 本研究提出的基于BLS的方法可以较好实现国外奶粉产地识别,为奶粉产地快速识别提供了新思路。 展开更多
关键词 奶粉 产地识别 近红外光谱技术 主成分分析 宽度学习系统
下载PDF
结合长短时记忆网络和宽度学习的股票预测新模型研究 被引量:2
20
作者 韩莹 张栋 +2 位作者 孙凯强 谈昊然 陆超 《运筹与管理》 CSSCI CSCD 北大核心 2023年第8期187-192,共6页
长短时记忆网络(LSTM)近年来广泛应用于股票预测中,其结构特点易陷入局部最优,从而影响预测精度。借鉴宽度学习系统(BLS)在时间序列预测上良好的逼近能力,本文尝试宽度学习与深度学习相结合。进一步地,针对股票序列不平稳特点,引入互补... 长短时记忆网络(LSTM)近年来广泛应用于股票预测中,其结构特点易陷入局部最优,从而影响预测精度。借鉴宽度学习系统(BLS)在时间序列预测上良好的逼近能力,本文尝试宽度学习与深度学习相结合。进一步地,针对股票序列不平稳特点,引入互补集成经验模态分解(CEEMD)进行降噪处理,提出CEEMD-LSTM-BLS(C-L-B)股票预测模型。选取农林牧渔行业股票价格,对新提出的模型进行实证研究。通过与基线模型、现有股票预测模型对比,证明了新模型在多个精度指标上都有明显提升。特别地,通过分别将C-L-B模型与不融入BLS的CEEMD-LSTM模型,对CEEMD分解后的分量预测结果进行对比发现:LSTM模型预测存在一定的误差,且越是拐点处,越是高频波动,预测误差越明显。而C-L-B模型中的BLS模块能够解决这类问题。当数据出现较大波动时,本文提出的新模型与现有模型相比,可以很好的解决拟合差、时滞等问题。 展开更多
关键词 股票预测 互补集成经验模态分解 长短时记忆网络 宽度学习系统
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部