期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
基于注意力机制的门控密集卷积网络调制识别算法
1
作者 杨驰 龚晓峰 雒瑞森 《计算机应用与软件》 北大核心 2024年第10期122-127,共6页
自动调制识别(AMR)是非合作通信系统中的重要组成部分,也是一个通信领域的研究难点。针对该难点,利用深度学习,将密集卷积网络(DenseNet)、门控循环单元(GRU)和注意力机制(Attention)三者结合,提出一种基于注意力机制的门控密集卷积网络... 自动调制识别(AMR)是非合作通信系统中的重要组成部分,也是一个通信领域的研究难点。针对该难点,利用深度学习,将密集卷积网络(DenseNet)、门控循环单元(GRU)和注意力机制(Attention)三者结合,提出一种基于注意力机制的门控密集卷积网络(AGDCN)的调制识别算法。该算法提取了信号的空间特征和时序特征,将两者相结合解决了信号识别率低的问题。同时,在网络中加入注意力机制,对GRU训练过程进行权重的自适应调整,有效地加强关键特征的学习。通过实验验证了AGDCN模型性能优于其他神经网络算法,在信噪比超过2 dB时,对11种调制类型的识别率可以达到90%。 展开更多
关键词 自动调制识别 深度学习 密集卷积网络 门控循环单元 注意力机制
下载PDF
基于一维密集卷积网络的悬臂梁断裂损伤识别
2
作者 沙春 《东莞理工学院学报》 2023年第3期101-107,共7页
基于振动的损伤识别是结构健康检测的重要任务,提出了一种基于加速度时程响应的悬臂梁断裂损伤识别方法。使用有限元分析模拟悬臂梁作为研究对象,通过分离裂缝模型施加裂缝模拟损伤状态,施加瞬态荷载获得损伤状态对应的加速度时程响应数... 基于振动的损伤识别是结构健康检测的重要任务,提出了一种基于加速度时程响应的悬臂梁断裂损伤识别方法。使用有限元分析模拟悬臂梁作为研究对象,通过分离裂缝模型施加裂缝模拟损伤状态,施加瞬态荷载获得损伤状态对应的加速度时程响应数据,利用偏移采样处理后的数据建立一维密集卷积网络回归模型,并与标准一维卷积神经网络模型和残差网络对比,最后在原始数据中添加白噪声模拟真实环境检验模型的实际应用效果。结果表明建立模型的识别精度以及效率均远远好于其他神经网络,并且在20分贝的噪声环境下效果也比较显著。证明了使用一维密集卷积网络对梁裂缝问题进行损伤识别的优越性和可行性。 展开更多
关键词 损伤识别 加速度时程响应 悬臂梁 裂缝 一维密集卷积网络
下载PDF
基于密集卷积网络的X线气胸检测与定位
3
作者 罗国婷 刘志勤 +3 位作者 周莹 王庆凤 郑介志 刘启榆 《计算机应用》 CSCD 北大核心 2019年第12期3541-3547,共7页
现有X线气胸检测存在两个主要问题:一是由于气胸通常与肋骨、锁骨等组织重叠,在临床上存在较大的漏诊,而现有算法的检测性能仍有待提高;二是现有基于卷积神经网络的算法无法给出可疑的气胸区域,缺乏可解释性。针对上述问题,提出了一种... 现有X线气胸检测存在两个主要问题:一是由于气胸通常与肋骨、锁骨等组织重叠,在临床上存在较大的漏诊,而现有算法的检测性能仍有待提高;二是现有基于卷积神经网络的算法无法给出可疑的气胸区域,缺乏可解释性。针对上述问题,提出了一种结合密集卷积网络(DenseNet)与梯度加权类激活映射的方法用于X线气胸的检测与定位。首先,构建了一个较大规模的胸部X线数据集PX-ray用于模型的训练和测试。其次,修改DenseNet的输出节点并在全连接层后添加一个sigmoid函数对胸片进行二分类(气胸/非气胸)。在训练过程中通过设置交叉熵损失函数的权重来缓解数据不平衡问题,提高模型准确率。最后,提取网络最后一个卷积层的参数以及对应的梯度,通过梯度加权类激活映射算法获得气胸类别的粗略定位图。在PX-ray测试集上的实验结果表明,所提方法的检测准确率为95.45%,并且在曲线下面积(AUC)、敏感度、特异性等指标上均高于0.9,优于VGG19、GoogLeNet以及ResNet算法,同时实现了对气胸区域的可视化。 展开更多
关键词 气胸 胸部X线 密集卷积网络 类别不平衡 类激活映射
下载PDF
基于密集卷积网络的单目图像深度估计方法 被引量:3
4
作者 王亚群 戴华林 +1 位作者 王丽 李国燕 《计算机工程》 CAS CSCD 北大核心 2021年第11期262-267,291,共7页
为解决目前单目图像深度估计方法存在的精度低、网络结构复杂等问题,提出一种密集卷积网络结构,该网络采用端到端的编码器和解码器结构。编码器引入密集卷积网络DenseNet,将前面每一层的输出作为本层的输入,在加强特征重用和前向传播的... 为解决目前单目图像深度估计方法存在的精度低、网络结构复杂等问题,提出一种密集卷积网络结构,该网络采用端到端的编码器和解码器结构。编码器引入密集卷积网络DenseNet,将前面每一层的输出作为本层的输入,在加强特征重用和前向传播的同时减少参数量和网络计算量,从而避免梯度消失问题发生。解码器结构采用带有空洞卷积的上投影模块和双线性插值模块,以更好地表达由编码器所提取的图像特征,最终得到与输入图像相对应的估计深度图。在NYU Depth V2室内场景深度数据集上进行训练、验证和测试,结果表明,该密集卷积网络结构在δ<1.25时准确率达到0.851,均方根误差低至0.482。 展开更多
关键词 密集卷积网络 单目图像 编码器 解码器 深度估计
下载PDF
基于密集卷积网络(DenseNets)的遥感图像分类研究 被引量:1
5
作者 李达 李琳 李想 《计算机时代》 2018年第10期60-63,67,共5页
遥感图像空间分辨率低,如何更好地提取图像特征成为提升分类性能的关键。文章提出了一种基于密集卷积网络(DenseNets)的遥感图像分类方法,针对遥感图像样本少,采用迁移学习方法,在ImageNet上进行预训练,获得初始模型,利用预训练模型在(U... 遥感图像空间分辨率低,如何更好地提取图像特征成为提升分类性能的关键。文章提出了一种基于密集卷积网络(DenseNets)的遥感图像分类方法,针对遥感图像样本少,采用迁移学习方法,在ImageNet上进行预训练,获得初始模型,利用预训练模型在(UCM_LandUse_21)上训练,更新训练策略获得最佳模型。结果表明,该方法比BOVW+SCK和SVM_LDA方法在分类精度上提高10%,比传统CNN提升了约7%,比MS_DCNN提升5%。因此,该方法对于遥感图像场景分类具有一定的价值。 展开更多
关键词 遥感图像分类 密集卷积网络 迁移学习 场景分类
下载PDF
基于空间变换密集卷积网络的图片敏感文字识别 被引量:1
6
作者 林金朝 蔡元奇 +2 位作者 庞宇 杨鹏 张焱杰 《计算机系统应用》 2020年第1期137-143,共7页
互联网上含有大量多字体混合、形变、拉伸、左右结构字形、倾斜畸变等复杂场景下的敏感文字图片,在处理相关图片过程中存在特征提取难、识别率低的问题.本文提出基于空间变换网络与密集神经网络的方法对图片敏感文字进行特征提取与变换... 互联网上含有大量多字体混合、形变、拉伸、左右结构字形、倾斜畸变等复杂场景下的敏感文字图片,在处理相关图片过程中存在特征提取难、识别率低的问题.本文提出基于空间变换网络与密集神经网络的方法对图片敏感文字进行特征提取与变换矫正,使用了深层双向GRU网络与CTC时域连接网络对序列特征信息进行标记预测,序列化处理文本的方式可较好地提升距离较宽文字与模糊文字信息的处理能力.实验结果表明,本模型在Caffe-OCR中文合成数据集和CTW数据集中分别实现了87.0%和90.3%识别准确率,平均识别时间达到了26.3 ms/图. 展开更多
关键词 密集卷积神经网络 空间变换网络 深度双向门控循环单元 时间联结分类器
下载PDF
基于一维密集连接卷积网络的配电网故障定位研究 被引量:1
7
作者 李铁柱 王伟 +2 位作者 丁超前 陈福全 张鲁 《制造业自动化》 2024年第1期41-44,共4页
分布式电源大量接入配电网,加大了网络的复杂程度,需要采集的数据量变大,对现在的配电网故障诊断技术带来了挑战,以数据驱动方法作为配电网故障定位方法成为了一种新的趋势。为此提出了一种基于一维密集连接卷积网络的配电网故障定位方... 分布式电源大量接入配电网,加大了网络的复杂程度,需要采集的数据量变大,对现在的配电网故障诊断技术带来了挑战,以数据驱动方法作为配电网故障定位方法成为了一种新的趋势。为此提出了一种基于一维密集连接卷积网络的配电网故障定位方法。通过三个测量点将零序电流采集出来作为网络的输入信号,然后将输入信号输入到改进卷积神经网络的一维密集连接卷积网络中进行特征提取,提取出故障特诊信息后输入到Softmax分类器中进行故障区段确定,最后通过配电网模型验证所提方法能够针对不同故障类型、不同过渡电阻具有快速准确的故障定位能力,并且和传统的一维卷积神经网络相比,具有更大的优越性。 展开更多
关键词 分布式电源 配电网 数据驱动 密集连接卷积网络 故障定位
下载PDF
基于改进密集连接网络的土地卫片场景分类方法
8
作者 吴志斌 《北京测绘》 2024年第9期1341-1345,共5页
为提高土地卫片图像场景识别的效率和精度,本文构建拉普拉斯金字塔-密集连接卷积网络(Lap-DenseNet)模型对土地场景应用进行识别分类,在Lap-DenseNet模型中Lap采用三层金字塔结构,DenseNet模型选用169层结构。将构建好的Lap-DenseNet模... 为提高土地卫片图像场景识别的效率和精度,本文构建拉普拉斯金字塔-密集连接卷积网络(Lap-DenseNet)模型对土地场景应用进行识别分类,在Lap-DenseNet模型中Lap采用三层金字塔结构,DenseNet模型选用169层结构。将构建好的Lap-DenseNet模型应用到含有6种土地场景的卫片分类中,结果显示:Lap-DenseNet模型训练集的迭代次数不宜过多,否则会因为过拟合现象导致分类效果降低,当迭代次数为200次时分类效果最佳;Lap-DenseNet模型对农村道路分类效果最好,对以绿色背景为主的耕地复耕、未建设用地、农用地复绿分类效果较差,6种场景的平均分类准确率为93.66%;与谷歌卷积网络(GoogLeNet)、快速特征嵌入卷积网络(CaffeNet)、基于密集连接的双流深度特征融合卷积网络(TEX-TS-Net)、基于VGG16的附加资源卷积网络(ARCNet-VGG16)、基于Inception-v3的胶囊卷积网络(Inception-v3-CapsNet)、基于全局上下文空间注意和密集连接的卷积网络(GCSANet)共6种场景分类方法相比,Lap-DenseNet模型的分类效果最好,可在土地卫片场景分类工作中予以合理运用。 展开更多
关键词 土地卫片 场景分类 拉普拉斯金字塔-密集连接卷积网络(Lap-DenseNet)模型 迭代次数 分类准确率
下载PDF
基于密集卷积神经网络的遥感影像超分辨率重建 被引量:5
9
作者 王植 李安翼 方锦雄 《测绘与空间地理信息》 2020年第8期4-8,共5页
针对传统遥感影像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,本文提出了一种基于密集卷积神经网络的遥感影像超分辨率重建的方法。该网络直接将低分辨率遥感影像作为网络的初始输入,通过密集卷积神经网络学习影像... 针对传统遥感影像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,本文提出了一种基于密集卷积神经网络的遥感影像超分辨率重建的方法。该网络直接将低分辨率遥感影像作为网络的初始输入,通过密集卷积神经网络学习影像的高阶表示,获得更具有表达能力的深层特征;同时,在网络中采用并行的1×1卷积滤波器结构,通过该结构减少模型参数;在重建网络中使用亚像素卷积可以更快地实现特征图的重建。在UCMerced_LandUse公共数据集上的实验表明:本文的网络模型提升了传统深度网络的影像重建性能,增强了重建图像的纹理细节并改善影像边缘失真,提升了重建影像的性能。 展开更多
关键词 遥感影像 超分辨率重建 密集卷积网络 并行卷积神经网络 亚像素卷积
下载PDF
基于加权密集连接卷积网络的深度强化学习方法 被引量:9
10
作者 夏旻 宋稳柱 +1 位作者 施必成 刘佳 《计算机应用》 CSCD 北大核心 2018年第8期2141-2147,共7页
针对深度强化学习中卷积神经网络(CNN)层数过深导致的梯度消失问题,提出一种将密集连接卷积网络应用于强化学习的方法。首先,利用密集连接卷积网络中的跨层连接结构进行图像特征的有效提取;然后,在密集连接卷积网络中加入权重系数,加权... 针对深度强化学习中卷积神经网络(CNN)层数过深导致的梯度消失问题,提出一种将密集连接卷积网络应用于强化学习的方法。首先,利用密集连接卷积网络中的跨层连接结构进行图像特征的有效提取;然后,在密集连接卷积网络中加入权重系数,加权密集连接卷积网络中的每一层都接收到前面几层产生的所有特征图,且之前所有层在跨层连接中被赋予不同的初始权重;最后,在训练中动态调整每层的权重,从而更加有效地提取特征。与常规深度强化学习方法相比,在GridWorld仿真实验中,在相同训练步数内的平均奖励值提升了85.67%;在FlappyBird仿真中,平均奖励值提升了55.05%。实验结果表明所提方法能在不同难度的游戏仿真实验中获得更好的性能。 展开更多
关键词 密集连接卷积网络 深度强化学习 GridWorld FlappyBird 跨层连接
下载PDF
融合密集卷积与空间转换网络的手势识别方法 被引量:12
11
作者 马杰 张绣丹 +1 位作者 杨楠 田亚蕾 《电子与信息学报》 EI CSCD 北大核心 2018年第4期951-956,共6页
手势识别作为人机交互的方式之一,在人工智能日益发展的今天备受瞩目。针对手势旋转、平移、缩放等形变导致识别率偏低的问题,该文基于密集卷积网络(Densenet)与空间转换网络(STN)提出了一种新型的网络结构Densenet_V2,先利用空间转换... 手势识别作为人机交互的方式之一,在人工智能日益发展的今天备受瞩目。针对手势旋转、平移、缩放等形变导致识别率偏低的问题,该文基于密集卷积网络(Densenet)与空间转换网络(STN)提出了一种新型的网络结构Densenet_V2,先利用空间转换网络对输入的样本和特征图进行空间变换和对齐,再利用密集卷积网络自动提取手势的有效特征,最后通过线性分类器对手势进行分类。为防止网络模型对样本数据集过度拟合,对网络进行训练时在损失函数中加入L2正则项以实现权重衰减。在Marcel手势库上进行多次实验。实验结果表明,Densenet_V2可以提高对静态形变手势的识别率。 展开更多
关键词 手势识别 形变 密集卷积网络 空间转换网络 L2正则项
下载PDF
基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法
12
作者 时帅 陈子文 +3 位作者 黄冬梅 贺琪 孙园 胡伟 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期102-111,共10页
针对传统电能质量扰动(power quality disturbances,PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolu-tional networks,DenseN... 针对传统电能质量扰动(power quality disturbances,PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolu-tional networks,DenseNet)的PQDs识别新方法。首先将一维PQD信号经MTF映射为二维图像,接着将图像输入到具有新型通道注意力机制的改进DenseNet中,最后训练网络自行从海量样本中提取特征,实现PQDs信号的正确识别。算例结果表明:在无噪声和信噪比为20、30 dB情况下,所提改进DenseNet能有效克服传统方法中主观性强、抗噪性能差等特征缺点,可以更好地提取复合PQD特征信息,对复合PQD识别率高。 展开更多
关键词 电能质量扰动 马尔科夫迁移场 可视化 密集卷积网络 通道注意力机制 分类识别
下载PDF
基于密集连接卷积网络的小面积指纹识别方法 被引量:7
13
作者 陈文燕 范文博 杨钧宇 《计算机工程与应用》 CSCD 北大核心 2020年第10期134-140,共7页
针对基于细节特征点的传统指纹识别方法在小面积指纹识别时识别率明显下降的问题,提出一种基于密集连接卷积网络的小面积指纹识别方法。对指纹原图进行图像增强处理,充分利用密集连接卷积网络特征复用的优点构建提取指纹特征的深度学习... 针对基于细节特征点的传统指纹识别方法在小面积指纹识别时识别率明显下降的问题,提出一种基于密集连接卷积网络的小面积指纹识别方法。对指纹原图进行图像增强处理,充分利用密集连接卷积网络特征复用的优点构建提取指纹特征的深度学习模型,并将二值特征引进训练模型,依据指纹图像的二值特征和特征向量实现小面积指纹的注册和识别。实验结果表明,所提出的方法在自建数据集中正确识别率达到98.57%,高于基于细节特征点的传统指纹识别方法,基本满足智能移动端的应用要求。 展开更多
关键词 指纹识别 密集连接卷积网络 二值特征 深度学习
下载PDF
基于密集梯度生成对抗网络的偏振图像融合算法 被引量:1
14
作者 张昊 段锦 +3 位作者 刘举 高美玲 郝有菲 陈广秋 《光学技术》 CAS CSCD 北大核心 2023年第3期354-360,共7页
针对单幅偏振图像在一定场景下无法提供充足信息的问题,结合强度图像和线偏振度图像的优势特征,提出一种基于密集梯度生成对抗网络的偏振图像融合算法。利用密集连接卷积网络和梯度算子构建密集梯度卷积模块,并将该模块应用在生成器中,... 针对单幅偏振图像在一定场景下无法提供充足信息的问题,结合强度图像和线偏振度图像的优势特征,提出一种基于密集梯度生成对抗网络的偏振图像融合算法。利用密集连接卷积网络和梯度算子构建密集梯度卷积模块,并将该模块应用在生成器中,用以增强融合图像的纹理细节;构造多尺度结构相似度和L1范数相结合的损失函数,用以提高网络的整体性能。在ZJU-RGB-P数据集进行定性比较和定量分析,实验结果表明,所提算法具有更好的主观视觉感受,同时各项评价指标均得到明显提升。 展开更多
关键词 图像融合 偏振图像 生成对抗网络 密集连接卷积网络
下载PDF
基于经验模式分解和一维密集连接卷积网络的电液换向阀内泄漏故障诊断方法 被引量:11
15
作者 师冲 任燕 +3 位作者 汤何胜 向家伟 孟彬 阮健 《液压与气动》 北大核心 2021年第1期36-41,共6页
内泄漏作为电液换向阀常见的故障类型,其故障振动信号具有非平稳性、非线性等特点,且容易被其他信号淹没、破坏。对此提出了一种经验模式分解(Empirical Mode Decomposition,EMD)和一维密集连接卷积网络(Densely Connected Convolutiona... 内泄漏作为电液换向阀常见的故障类型,其故障振动信号具有非平稳性、非线性等特点,且容易被其他信号淹没、破坏。对此提出了一种经验模式分解(Empirical Mode Decomposition,EMD)和一维密集连接卷积网络(Densely Connected Convolutional Networks,DenseNet)的电液换向阀内泄漏故障诊断方法。该方法首先利用EMD对振动信号进行分解得到一系列本征模态分量(Instrinsic Mode Function,IMF),并将IMF分量和原始振动信号依次进行并联堆叠;然后将并联堆叠信号作为一维密集连接卷积网络的输入进行特征的自动提取,并进行故障分类;最后通过DenseNet与传统的一维卷积神经网络(CNN)对比验证得出,该方法能准确、有效地对电液换向阀内泄漏故障进行诊断。 展开更多
关键词 内泄漏 经验模式分解 密集连接卷积网络 电液换向阀 故障诊断
下载PDF
基于卷积自编码与密集时间卷积网络的回转支承退化趋势预测 被引量:3
16
作者 张典震 陈捷 +1 位作者 王华 杨启帆 《振动与冲击》 EI CSCD 北大核心 2021年第23期9-16,共8页
为了对反映回转支承性能退化状况的健康指标进行准确预测,提出了一种基于改进时间卷积网络(temporal convolution network,TCN)的退化趋势预测模型——密集时间卷积网络(densely temporal convolution network,DTCN)。该模型借鉴Dense-... 为了对反映回转支承性能退化状况的健康指标进行准确预测,提出了一种基于改进时间卷积网络(temporal convolution network,TCN)的退化趋势预测模型——密集时间卷积网络(densely temporal convolution network,DTCN)。该模型借鉴Dense-Net网络中的Dense-block模块对网络结构进行改进,以解决时间卷积网络在训练中损失函数下降缓慢,以及网络不易收敛、收敛效果差的问题;使用回转支承全寿命试验数据,借助卷积自编码网络(convolutional auto-encoders,CAE)与隐马尔可夫模型(hidden Markov model,HMM)建立健康指标,验证该改进算法的有效性;将DTCN与其他序列预测模型如长短时记忆网络(long short-term memory,LSTM)、门控循环单元网络(gated recurrent unit,GRU)等对比。结果表明,该模型在预测效果上具有优越性,能够更准确地预测健康指标的变化情况,可用于回转支承的退化趋势预测任务。 展开更多
关键词 回转支承 密集时间卷积网络(DTCN) 卷积自编码网络(CAE) 退化趋势预测
下载PDF
基于密集卷积神经网络的遥感飞机识别 被引量:6
17
作者 于丽 刘坤 于晟焘 《计算机工程与应用》 CSCD 北大核心 2018年第19期179-185,203,共8页
传统的飞机识别方法受模糊、遮挡、噪声以及光照等多种因素的干扰时会降低识别率,且卷积神经网络主要依赖局部特征,却丢失了轮廓特征等重要的全局结构化特征,从而导致算法对于受干扰飞机图像识别效果不佳。因此,基于密集卷积神经网络提... 传统的飞机识别方法受模糊、遮挡、噪声以及光照等多种因素的干扰时会降低识别率,且卷积神经网络主要依赖局部特征,却丢失了轮廓特征等重要的全局结构化特征,从而导致算法对于受干扰飞机图像识别效果不佳。因此,基于密集卷积神经网络提出一种结合局部与全局特征的联合监督识别方法,以密集卷积神经网络为基础得到图像特征,通过结合局部特征(卷积神经网络特征)与全局特征(方向梯度直方图特征)进行分类,分类器目标函数使用softmax损失和中心损失联合监督方法。实验结果表明,局部特征与全局特征的结合使算法更加智能化,且损失函数联合监督方法能够实现图像深层特征的类内聚合、类间分散,该算法能有效解决卷积神经网络对受到多种干扰的遥感图像识别率低的问题。 展开更多
关键词 密集卷积神经网络 目标识别 中心损失 联合监督 方向梯度直方图
下载PDF
自学习稀疏密集连接卷积神经网络图像分类方法 被引量:3
18
作者 吴鹏 林国强 +1 位作者 郭玉荣 赵振兵 《信号处理》 CSCD 北大核心 2019年第10期1747-1752,共6页
通道剪枝是深度模型压缩的主要方法之一。针对密集连接卷积神经网络中,每一层都接收其前部所有卷积层的输出特征图作为输入,但并非每个后部层都需要所有先前层的特征,网络中存在很大冗余的缺点。本文提出一种自学习剪枝密集连接网络中... 通道剪枝是深度模型压缩的主要方法之一。针对密集连接卷积神经网络中,每一层都接收其前部所有卷积层的输出特征图作为输入,但并非每个后部层都需要所有先前层的特征,网络中存在很大冗余的缺点。本文提出一种自学习剪枝密集连接网络中冗余通道的方法,得到稀疏密集连接卷积神经网络。首先,提出了一种衡量每个卷积层中每个输入特征图对输出特征图贡献度大小的方法,贡献度小的输入特征图即为冗余特征图;其次,介绍了通过自学习,网络分阶段剪枝冗余通道的训练过程,得到了稀疏密集连接卷积神经网络,该网络剪枝了密集连接网络中的冗余通道,减少了网络参数,降低了存储和计算量;最后,为了验证本文方法的有效性,在图像分类数据集CIFAR-10/100上进行了实验,在不牺牲准确率的前提下减小了模型冗余。 展开更多
关键词 剪枝冗余通道 自学习 稀疏化密集连接卷积神经网络 图像分类
下载PDF
改进密集连接卷积网络的滚动轴承故障诊断方法 被引量:9
19
作者 牛锐祥 丁华 +1 位作者 施瑞 孟祥龙 《振动与冲击》 EI CSCD 北大核心 2022年第11期252-258,共7页
针对滚动轴承工作环境噪声干扰较大、模型泛化能力不足、变工况诊断较难的问题,提出了一种改进密集连接卷积网络的故障诊断方法。将采集到的滚动轴承的原始时域信号作为模型输入,不需要任何数据处理,实现端到端的特征提取和分类任务。... 针对滚动轴承工作环境噪声干扰较大、模型泛化能力不足、变工况诊断较难的问题,提出了一种改进密集连接卷积网络的故障诊断方法。将采集到的滚动轴承的原始时域信号作为模型输入,不需要任何数据处理,实现端到端的特征提取和分类任务。改进密集连接卷积网络在密集块中强调信息流动,增强特征复用,通过多尺度卷积层提取特征,利用注意力机制对多尺度特征通道加权。在堆叠的密集块和池化层完成主要特征提取后,采用多分类函数实现故障诊断。选用凯斯西储大学轴承数据集验证改进密集连接卷积网络的诊断能力,结果表明,改进密集连接卷积网络在理想试验下的识别率为99.8%、在抗噪试验下的识别率为98.22%,在泛化试验下的识别率为97.19%,识别率明显高于其他深度学习模型,证明了其在滚动轴承故障诊断方面的优越性。 展开更多
关键词 滚动轴承 故障诊断 密集连接卷积网络 多尺度 注意力机制
下载PDF
结合亮度感知与密集卷积的红外与可见光图像融合 被引量:4
20
作者 曲海成 王宇萍 +1 位作者 谢梦婷 肖苇 《智能系统学报》 CSCD 北大核心 2022年第3期643-652,共10页
为解决弱光照条件下红外与可见光图像融合质量差的问题,提出一种结合亮度感知与密集卷积的红外与可见光图像融合方法(brightness perception and dense convolution,BPD-Fusion)。首先,对可见光图像进行亮度计算,得到亮度权重并对其暗... 为解决弱光照条件下红外与可见光图像融合质量差的问题,提出一种结合亮度感知与密集卷积的红外与可见光图像融合方法(brightness perception and dense convolution,BPD-Fusion)。首先,对可见光图像进行亮度计算,得到亮度权重并对其暗区域进行亮度增强;然后,将增强的可见光图像与红外图像级联输入生成器,在其Conv1阶段后嵌入密集卷积以获取更丰富的图像特征;最后,为了达到较强的图像重构与生成能力,建立多损失函数构建端到端的图像融合过程。在TNO和KAIST数据集上进行融合质量测评:主观评价上,提出的方法视觉效果良好;客观评价上,差异相关和、信息熵、互信息和平均梯度指标均优于对比方法。 展开更多
关键词 图像融合 亮度感知 密集卷积网络 对抗生成网络 红外与可见光图像 信息熵 互信息 差异相关和
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部