为解决弱光照条件下红外与可见光图像融合质量差的问题,提出一种结合亮度感知与密集卷积的红外与可见光图像融合方法(brightness perception and dense convolution,BPD-Fusion)。首先,对可见光图像进行亮度计算,得到亮度权重并对其暗...为解决弱光照条件下红外与可见光图像融合质量差的问题,提出一种结合亮度感知与密集卷积的红外与可见光图像融合方法(brightness perception and dense convolution,BPD-Fusion)。首先,对可见光图像进行亮度计算,得到亮度权重并对其暗区域进行亮度增强;然后,将增强的可见光图像与红外图像级联输入生成器,在其Conv1阶段后嵌入密集卷积以获取更丰富的图像特征;最后,为了达到较强的图像重构与生成能力,建立多损失函数构建端到端的图像融合过程。在TNO和KAIST数据集上进行融合质量测评:主观评价上,提出的方法视觉效果良好;客观评价上,差异相关和、信息熵、互信息和平均梯度指标均优于对比方法。展开更多
文摘为解决弱光照条件下红外与可见光图像融合质量差的问题,提出一种结合亮度感知与密集卷积的红外与可见光图像融合方法(brightness perception and dense convolution,BPD-Fusion)。首先,对可见光图像进行亮度计算,得到亮度权重并对其暗区域进行亮度增强;然后,将增强的可见光图像与红外图像级联输入生成器,在其Conv1阶段后嵌入密集卷积以获取更丰富的图像特征;最后,为了达到较强的图像重构与生成能力,建立多损失函数构建端到端的图像融合过程。在TNO和KAIST数据集上进行融合质量测评:主观评价上,提出的方法视觉效果良好;客观评价上,差异相关和、信息熵、互信息和平均梯度指标均优于对比方法。