期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于改进Yolov3-Tiny的加油站目标检测算法研究
1
作者 张利巍 杨万帅 《吉林大学学报(信息科学版)》 CAS 2024年第3期559-566,共8页
针对加油站场景中的目标检测算法存在检测精度低的问题,提出一种基于Yolov3-Tiny的加油站场景目标检测改进算法。该算法以Yolov3-Tiny模型为基础网络,引入Yolov4算法提出的Mosaic图像增强方式进行数据预处理,采用密集连接模块重构特征... 针对加油站场景中的目标检测算法存在检测精度低的问题,提出一种基于Yolov3-Tiny的加油站场景目标检测改进算法。该算法以Yolov3-Tiny模型为基础网络,引入Yolov4算法提出的Mosaic图像增强方式进行数据预处理,采用密集连接模块重构特征提取网络,并将CBAM(Convolutional Block Attention Module)注意力模块与金字塔池化模块(Pyramid Pooling Module)加入到网络中,最终实现了加油站场景下的目标检测。实验结果表明,改进的算法相比于原算法的总体mAP提升了8.2%,能更有效地应用于加油站目标检测中。 展开更多
关键词 目标检测 密集连接模块 注意力机制 金字塔池化模块 图像增强
下载PDF
矿用无人驾驶车辆行人检测技术研究
2
作者 周李兵 于政乾 +4 位作者 卫健健 蒋雪利 叶柏松 赵叶鑫 杨斯亮 《工矿自动化》 CSCD 北大核心 2024年第10期29-37,共9页
矿用无人驾驶车辆的工作环境光照条件复杂,行人检测经常出现漏检现象,导致矿用无人驾驶车辆可靠性及安全性不足。针对巷道光照条件复杂的问题,提出了一种弱光图像增强算法:将弱光图像由RGB图像空间分解为HSV图像空间,通过Logarithm函数... 矿用无人驾驶车辆的工作环境光照条件复杂,行人检测经常出现漏检现象,导致矿用无人驾驶车辆可靠性及安全性不足。针对巷道光照条件复杂的问题,提出了一种弱光图像增强算法:将弱光图像由RGB图像空间分解为HSV图像空间,通过Logarithm函数对亮度分量先进行光照,再通过双边滤波器去除噪声;采用形态学对饱和度分量进行闭操作,再通过高斯滤波器滤除噪声;将图像转换回RGB图像空间,通过半隐式ROF去噪模型对图像再次进行去噪,得到增强图像。针对行人检测存在漏检、精度低的问题,提出了一种基于改进YOLOv3的矿用无人驾驶车辆行人检测算法:采用密集连接块取代YOLOv3中的Residual连接,提高特征图利用率;采用Slim-neck结构优化YOLOv3的特征融合结构,使得特征图之间能够进行高效的信息融合,进一步提高对小目标行人的检测精度,并利用其内部特殊的轻量化卷积结构,提高检测速度;加入轻量级的卷积注意力模块(CBAM)增强算法对目标类别和位置的注意程度,提高行人检测精度。实验结果表明:(1)提出的弱光图像增强算法能够有效提高图像可见度,图像中行人的纹理更加清晰,并具有更好的噪声抑制效果。(2)基于增强后图像的矿用无人驾驶车辆行人检测算法的平均精度达95.68%,相较于基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别算法、YOLOv5、YOLOv3算法分别提高了2.53%,6.42%,11.77%,且运行时间为29.31 ms。(3)基于增强后图像,YOLOv3和基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别算法出现了漏检和误检的问题,而矿用无人驾驶车辆行人检测算法有效改善了该问题。 展开更多
关键词 矿用无人驾驶车辆 井下行人检测 YOLOv3 弱光图像增强 半隐式ROF去噪 密集连接模块 Slim-neck 卷积注意力模块
下载PDF
基于改进U-Net网络的遥感图像云检测 被引量:15
3
作者 张永宏 蔡朋艳 +2 位作者 陶润喆 王剑庚 田伟 《测绘通报》 CSCD 北大核心 2020年第3期17-20,34,共5页
为了解决U-Net模型应用于云检测时对碎云和薄云存在漏检的问题,本文提出了一种改进的U-Net网络模型,并应用于FY-4A数据进行云检测。首先,利用国家气象卫星中心提供的云检测产品生成二分类云标签;其次,将U-Net模型的编码器与残差模块相结... 为了解决U-Net模型应用于云检测时对碎云和薄云存在漏检的问题,本文提出了一种改进的U-Net网络模型,并应用于FY-4A数据进行云检测。首先,利用国家气象卫星中心提供的云检测产品生成二分类云标签;其次,将U-Net模型的编码器与残差模块相结合,使得网络参数共享,并避免深层网络的退化问题;最后,在解码器中融入密集连接模块,将浅层特征与深层特征进行连接,便于获取新的特征,并提高特征使用率。试验结果表明,模型在测试集上的IOU值和Dice系数分别为91.5%和95.2%,可以很好地检测出薄云及大量碎云,效果明显优于U-Net模型。 展开更多
关键词 云检测 U-Net 残差模块 密集连接模块 FY-4A
下载PDF
基于无人机航拍与改进YOLOv3模型的云杉计数 被引量:15
4
作者 陈锋军 朱学岩 +2 位作者 周文静 顾梦梦 赵燕东 《农业工程学报》 EI CAS CSCD 北大核心 2020年第22期22-30,共9页
为解决目前苗木计数由人工完成而导致的成本高,效率低,计数精度不能得到保障的问题,该研究以自然环境下的云杉为研究对象,以无人机航拍云杉图像和拼接后完整地块云杉图像为数据源,根据云杉尺寸差异大和训练样本小的特点提出一种基于改进... 为解决目前苗木计数由人工完成而导致的成本高,效率低,计数精度不能得到保障的问题,该研究以自然环境下的云杉为研究对象,以无人机航拍云杉图像和拼接后完整地块云杉图像为数据源,根据云杉尺寸差异大和训练样本小的特点提出一种基于改进YOLOv3模型的云杉计数模型。该模型将密集连接模块和过渡模块引入特征提取过程,形成Darknet-61-Dense特征提取网络。通过694幅无人机航拍云杉图像测试表明,密集连接模块和过渡模块可解决YOLOv3模型小样本训练过拟合问题和云杉特征丢失问题,改进YOLOv3模型可以快速准确实现云杉计数,在精确率P、召回率R、平均精度AP、平均计数准确率MCA和平均检测时间ADT这5个评价指标上达到96.81%、93.53%、94.26%、98.49%和0.351 s;对比原有YOLOv3模型、SSD模型和Faster R-CNN模型,精确率P分别高2.44、4.13和0.84个百分点。对于拼接后完整地块云杉图像,改进YOLOv3模型的5个评价指标的结果分别为91.48%、89.46%、89.27%、93.38%和1.847 s;对比原有YOLOv3模型、SSD模型和Faster R-CNN模型,精确率P分别高2.54、9.33和0.74个百分点。该研究为利用无人机快速准确统计苗木数量的关键步骤做出有益的探索。 展开更多
关键词 模型 无人机 计数 密集连接模块 过渡模块 特征提取
下载PDF
基于深度学习的卫星图像道路分割算法 被引量:3
5
作者 张新华 黄梦醒 +3 位作者 张雨 李玉春 单怡晴 冯思玲 《计算机工程》 CAS CSCD 北大核心 2021年第10期306-313,共8页
针对道路分割时存在的梯度消失问题,构建基于U-Net的卫星道路图像语义分割模型。通过密集连接模块减少梯度消失,并引入空间空洞金字塔结构保留更多的图像特征,在学习深层次特征信息时采用注意力监督机制,提取道路要素的特征信息。在卫... 针对道路分割时存在的梯度消失问题,构建基于U-Net的卫星道路图像语义分割模型。通过密集连接模块减少梯度消失,并引入空间空洞金字塔结构保留更多的图像特征,在学习深层次特征信息时采用注意力监督机制,提取道路要素的特征信息。在卫星图像道路数据集上的测试结果表明,与FCN、SegNet、U_Net算法相比,该算法模型的准确率、召回率和精确率指标分别达到96.3%、96.9%和96.6%,能够有效地对道路元素进行准确分割。 展开更多
关键词 深度学习 道路分割 密集连接模块 空间空洞金字塔结构 注意力监督机制
下载PDF
结合图像特征迁移的光场深度估计方法 被引量:2
6
作者 罗少聪 张旭东 +2 位作者 万乐 谢林芳 黎书玉 《计算机工程》 CAS CSCD 北大核心 2023年第4期206-216,共11页
光场相机可以通过单次曝光同时采集空间中光线的位置信息和角度信息,在深度估计领域具有独特优势。目前光场真实场景数据集的深度标签难以获取且准确度不高,因此现有的多数光场深度估计方法依赖光场合成场景数据集进行训练,但合成数据... 光场相机可以通过单次曝光同时采集空间中光线的位置信息和角度信息,在深度估计领域具有独特优势。目前光场真实场景数据集的深度标签难以获取且准确度不高,因此现有的多数光场深度估计方法依赖光场合成场景数据集进行训练,但合成数据集与真实数据集在图像特征分布上的差异,导致网络在将子孔径图像与深度图之间的映射关系应用于真实数据集时容易出现偏差。提出一种新的光场深度估计方法,利用基于对抗学习的图像翻译网络,使合成场景子孔径图像逼近真实场景子孔径图像的特征分布。在图像翻译网络中实施多视图角度一致性约束,保证图像翻译前后不同视角子孔径图像之间的视差关系保持不变。设计一种多通道密集连接深度估计网络,利用多通道输入模块充分提取不同方向子孔径图像堆栈特征,并通过密集连接模块进行特征融合,提升网络特征提取和特征传递的效率。在光场合成数据集4D Light Field Benchmark和光场真实数据集Stanford Lytro Light Field上的实验结果表明:与Baseline网络相比,该网络的均方误差和坏像素率平均降低23.3%和8.6%;与EPINET、EPI_ORM、EPN+OS+GC等方法相比,基于该网络的估计方法有效提升了深度估计的准确度,具有良好的鲁棒性和泛化能力。 展开更多
关键词 光场 深度估计 对抗学习 特征迁移 角度一致性 密集连接模块
下载PDF
结合高效特征融合的可变尺寸图像隐写分析
7
作者 肖瑞雪 冯英伟 屈建萍 《计算机工程与应用》 CSCD 北大核心 2021年第24期126-134,共9页
为提升隐写分析的效率和准确率,并适应多尺寸输入图像,提出一个基于高效特征融合的可变尺寸图像隐写分析模型。在预处理层中,将经空域富模型的多阶高通滤波器初始化的多尺寸卷积核加入网络学习中,以提升模型的收敛效率和检测性能;在特... 为提升隐写分析的效率和准确率,并适应多尺寸输入图像,提出一个基于高效特征融合的可变尺寸图像隐写分析模型。在预处理层中,将经空域富模型的多阶高通滤波器初始化的多尺寸卷积核加入网络学习中,以提升模型的收敛效率和检测性能;在特征提取层中,采用特征融合思想,设计两个由Ghost瓶颈层、残差模块、密集连接模块组成的子网络,并融合输出的抽象隐写语义特征和非线性的高维隐写特征,以获得隐写特征的依赖性信息,增强模型的特征表达能力;采用改良版空间金字塔池化以自适应可变尺寸的图像样本,并丰富隐写特征的多样性。经仿真分析可知,模型能正确捕获关键的隐写信号,具备较高的收敛效率,在嵌入率为0.2、0.4的WOW隐写算法的检测准确率分别为82.6%和96.5%,在嵌入率为0.2、0.4的S-UNIWARD隐写算法的检测准确率分别为81.4%和95.2%,显著高于SRM和YedroudjNet隐写分析模型。 展开更多
关键词 隐写分析 特征融合 空间金字塔 GHOST 残差模块 密集连接模块
下载PDF
基于多尺度循环网络的运动模糊图像复原方法
8
作者 张甜 卢振坤 +1 位作者 纪佳奇 刘胜 《现代计算机》 2023年第10期1-8,共8页
针对目前图像去模糊恢复细节不好、泛化性能不高的问题,提出了一种基于多尺度循环网络的运动模糊图像复原算法,在编码端将多尺度特征融合模块和残差密集连接模块融合,引入多尺度残差密集型连接模块。同时引入一种注意力机制并将融合了... 针对目前图像去模糊恢复细节不好、泛化性能不高的问题,提出了一种基于多尺度循环网络的运动模糊图像复原算法,在编码端将多尺度特征融合模块和残差密集连接模块融合,引入多尺度残差密集型连接模块。同时引入一种注意力机制并将融合了注意力机制的多尺度残差密集连接模块作为网络的基本结构。实验结果表明,与生成对抗网络相比,在GOPRO数据集的PSNR和SSIM最大分别提升了4.13 dB和0.0254 dB,和近年来效果最明显的SRN相比,Kohler数据集上的PSNR和SSIM分别提升了0.31 dB和0.0179 dB,具有更好的泛化性能。 展开更多
关键词 多尺度特征融合模块 残差密集连接模块 注意力机制
下载PDF
基于大数据的工业园区塑料废气预测模型 被引量:1
9
作者 张清倩 邱智铖 《塑料科技》 CAS 北大核心 2021年第1期117-119,共3页
为更好地监控工业园区塑料废气排放量,采用深度学习大数据技术提出一个工业园区塑料废气预测模型。在塑料废气预测模型的特征提取层,设计了一个由两个分支网络组成的残差模块和一个三层密集连接模块,期望提取抽象、高维的塑料废气语义信... 为更好地监控工业园区塑料废气排放量,采用深度学习大数据技术提出一个工业园区塑料废气预测模型。在塑料废气预测模型的特征提取层,设计了一个由两个分支网络组成的残差模块和一个三层密集连接模块,期望提取抽象、高维的塑料废气语义信息;在塑料废气预测模型的分类层,采用一个全连接层来汇聚数据并进行统计。经仿真分析,获取训练至800代的塑料废气预测模型,当批次样本量为16时,它的塑料废气误差百分比最小,为0.0429,预测性能较优。研究结果可为当前工业园区塑料废气预测、监控工作提供一定的参考。 展开更多
关键词 塑料废气 大数据 残差模块 密集连接模块
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部