This paper focuses on studying the relation between a velocity-dependent symmetry and a generalized Lutzky conserved quantity for a holonomic system with remainder coordinates subjected to unilateral constraints. The ...This paper focuses on studying the relation between a velocity-dependent symmetry and a generalized Lutzky conserved quantity for a holonomic system with remainder coordinates subjected to unilateral constraints. The differential equations of motion of the system are established, and the definition of Lie symmetry for the system is given. The conditions under which a Lie symmetry can directly lead up to a generalized Lutzky conserved quantity and the form of the new conserved quantity are obtained, and an example is given to illustrate the application of the results.展开更多
In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the sys...In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.展开更多
This paper presents a method to reconstruct symmetric geometric models from point cloud with inherent symmetric structure. Symmetry types commonly found in engineering parts, i.e., translational, reflectional and rota...This paper presents a method to reconstruct symmetric geometric models from point cloud with inherent symmetric structure. Symmetry types commonly found in engineering parts, i.e., translational, reflectional and rotational symmetries are considered. The reconstruction problem is formulated as a constrained optimization, where the objective function is the sum of squared distances of points to the model, and constraints are enforced to keep geometric relationships in the model. First, the explicit representations of symmetric models are presented. Then, by using the concept of parameterized points (where the coor-dinate components are represented as functions rather than constants), the distances of points to symmetric models are deduced. With these distance functions, symmetry information, for both 2D and 3D models, is uniformly represented in the process of reconstruction. The constrained optimization problem is solved by a standard nonlinear optimization method. Owing to the explicit representation of symmetry information, the computational complexity of our method is reduced greatly. Finally, examples are given to demonstrate the application of the proposed method.展开更多
The definition and the criterion for a unified symmetry of nonholonomic mechanical systems of non- Chetaev's type with unilateral constraints are presented based on the total time derivative along the trajectory of t...The definition and the criterion for a unified symmetry of nonholonomic mechanical systems of non- Chetaev's type with unilateral constraints are presented based on the total time derivative along the trajectory of the system. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced froth the unified symmetry, is obtained. An example is given to illustrate the application of the results.展开更多
An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the sup...An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability ...A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10272021 and the Natural Science Foundation of High Education Department of Jiangsu Province under Grant No. 04KJA130135
文摘This paper focuses on studying the relation between a velocity-dependent symmetry and a generalized Lutzky conserved quantity for a holonomic system with remainder coordinates subjected to unilateral constraints. The differential equations of motion of the system are established, and the definition of Lie symmetry for the system is given. The conditions under which a Lie symmetry can directly lead up to a generalized Lutzky conserved quantity and the form of the new conserved quantity are obtained, and an example is given to illustrate the application of the results.
文摘In this paper, we study the Mei symmetry which can result in a Lutzky conserved quantity for nonholonomic mechanical system with unilateral constraints. The definition and the criterion of the Mei symmetry for the system are given. The necessary and sufficient condition under which the Mei symmetry is a Lie symmetry for the system is obtained. A Lutzky conserved quantity deduced from the Mei symmetry is gotten. An example is given to illustrate the application of our results.
基金the National Natural Science Foundation of China (No. 50575098)China Postdoctoral Science Foundation (No. 20070421176)
文摘This paper presents a method to reconstruct symmetric geometric models from point cloud with inherent symmetric structure. Symmetry types commonly found in engineering parts, i.e., translational, reflectional and rotational symmetries are considered. The reconstruction problem is formulated as a constrained optimization, where the objective function is the sum of squared distances of points to the model, and constraints are enforced to keep geometric relationships in the model. First, the explicit representations of symmetric models are presented. Then, by using the concept of parameterized points (where the coor-dinate components are represented as functions rather than constants), the distances of points to symmetric models are deduced. With these distance functions, symmetry information, for both 2D and 3D models, is uniformly represented in the process of reconstruction. The constrained optimization problem is solved by a standard nonlinear optimization method. Owing to the explicit representation of symmetry information, the computational complexity of our method is reduced greatly. Finally, examples are given to demonstrate the application of the proposed method.
文摘The definition and the criterion for a unified symmetry of nonholonomic mechanical systems of non- Chetaev's type with unilateral constraints are presented based on the total time derivative along the trajectory of the system. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced froth the unified symmetry, is obtained. An example is given to illustrate the application of the results.
基金Project supported by the Hangdian Foundation (No. KYS075608072)the National Natural Science Foundation of China (Nos. 10671187, 10971109)the Program for New Century Excellent Talents in University of China (No. NCET-08-0515)
文摘An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.
基金Supported by the Science and Technology Plan Projects of the Educational Department of Shandong Province of China under GrantNo. J08LI08
文摘A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.