基于小孔耦合理论和电磁场全波分析法,根据正向叠加和反向抵消原则,确定耦合孔半径、间距和数量,并通过HFSS软件进行仿真设计,实现了毫米波段定向耦合器的工作频段展宽;提出了一种新颖的波导腔体三层结构设计方案,解决了波导接触面缝隙...基于小孔耦合理论和电磁场全波分析法,根据正向叠加和反向抵消原则,确定耦合孔半径、间距和数量,并通过HFSS软件进行仿真设计,实现了毫米波段定向耦合器的工作频段展宽;提出了一种新颖的波导腔体三层结构设计方案,解决了波导接触面缝隙切割电流引起的毫米波辐射问题,实现了波导无辐射装配,提高了器件的稳定性和可靠性。成功研制的毫米波W波段宽带、高耦合度定向耦合器在88~102 GHz频段传输损耗0.6 d B,两路输出幅度误差优于±0.3 d B,隔离度大于18 d B。展开更多
为满足X波段T/R组件定标和校正的需求,组件内部需集成小型化、高性能的耦合器。微带到带状线多阶小孔耦合器在弱耦合情况下具有宽带平坦的耦合特性、体积小、易于与射频有源电路集成,非常方便在T/R组件的LTCC多层基板上实现。在设计过程...为满足X波段T/R组件定标和校正的需求,组件内部需集成小型化、高性能的耦合器。微带到带状线多阶小孔耦合器在弱耦合情况下具有宽带平坦的耦合特性、体积小、易于与射频有源电路集成,非常方便在T/R组件的LTCC多层基板上实现。在设计过程中,首先根据多阶小孔耦合的基本理论和公式确定小孔的数量和分布特征,再依据实际布局的限制在电磁场仿真软件HFSS中建立参数化模型,最后通过HFSS的调谐优化确定最优的物理参数。仿真表明,该耦合器尺寸小于λ04,带内平坦度优于±0.1 d B。该耦合器完全达到设计要求,可广泛应用于X波段小型化宽带T/R组件中。展开更多
文摘基于小孔耦合理论和电磁场全波分析法,根据正向叠加和反向抵消原则,确定耦合孔半径、间距和数量,并通过HFSS软件进行仿真设计,实现了毫米波段定向耦合器的工作频段展宽;提出了一种新颖的波导腔体三层结构设计方案,解决了波导接触面缝隙切割电流引起的毫米波辐射问题,实现了波导无辐射装配,提高了器件的稳定性和可靠性。成功研制的毫米波W波段宽带、高耦合度定向耦合器在88~102 GHz频段传输损耗0.6 d B,两路输出幅度误差优于±0.3 d B,隔离度大于18 d B。
文摘为满足X波段T/R组件定标和校正的需求,组件内部需集成小型化、高性能的耦合器。微带到带状线多阶小孔耦合器在弱耦合情况下具有宽带平坦的耦合特性、体积小、易于与射频有源电路集成,非常方便在T/R组件的LTCC多层基板上实现。在设计过程中,首先根据多阶小孔耦合的基本理论和公式确定小孔的数量和分布特征,再依据实际布局的限制在电磁场仿真软件HFSS中建立参数化模型,最后通过HFSS的调谐优化确定最优的物理参数。仿真表明,该耦合器尺寸小于λ04,带内平坦度优于±0.1 d B。该耦合器完全达到设计要求,可广泛应用于X波段小型化宽带T/R组件中。