Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ...Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.展开更多
The transfer function of the microring resonator is deduced, and the effects of the normalized loss, coupling coefficient and surrounding media on the resonance performance are investigated thoroughly. Utilizing the i...The transfer function of the microring resonator is deduced, and the effects of the normalized loss, coupling coefficient and surrounding media on the resonance performance are investigated thoroughly. Utilizing the improved fused tapering tech- nique and ingenious self-coiling coupling method, a high-quality microring resonator (radius of about 500 I.tm) with larger extinction ratio (〉10 dB) and sharper resonance is designed and fabricated by a segment of continuous sub-micrometer fiber. The microring resonator constructed in this way demonstrates extremely small connection loss with communication fiber in contrast to the planar waveguide technology.展开更多
文摘Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.
基金supported by the National Natural Science Foundation of China(Nos.61007007and11002018)
文摘The transfer function of the microring resonator is deduced, and the effects of the normalized loss, coupling coefficient and surrounding media on the resonance performance are investigated thoroughly. Utilizing the improved fused tapering tech- nique and ingenious self-coiling coupling method, a high-quality microring resonator (radius of about 500 I.tm) with larger extinction ratio (〉10 dB) and sharper resonance is designed and fabricated by a segment of continuous sub-micrometer fiber. The microring resonator constructed in this way demonstrates extremely small connection loss with communication fiber in contrast to the planar waveguide technology.