为了准确、快速地检测作物叶部病害,提出一种基于自适应学习局部二值模式(adaptive learning local binary pattern,简称ALLBP)的苹果叶部病斑分割与检测方法。首先利用ALLBP获取正常叶片图像和病害叶片图像的特征差异,并确定病斑判断阈...为了准确、快速地检测作物叶部病害,提出一种基于自适应学习局部二值模式(adaptive learning local binary pattern,简称ALLBP)的苹果叶部病斑分割与检测方法。首先利用ALLBP获取正常叶片图像和病害叶片图像的特征差异,并确定病斑判断阈值,然后将待识别的叶片图像分割为大小相同的子块,再提取同样的特征与阈值进行比较,以判定各子块中是否有病斑。结果表明,该方法能够有效检测苹果病斑的分布特性,与局部二值模式(local binary pattern,简称LBP)和中心对称局部二值模式(center-symmetric local binary pattern,简称CS-LBP)相比,该方法具有更少的特征维数和更高的正确识别率。展开更多
细胞局部二值模式(cell structured Local Binary Pattern)不能将人体图像的局部信息与全局信息相结合。针对这一不足,在细胞局部二值模式特征的基础上,提出多尺度细胞局部二值模式(Multi-scale cell structured Local Binary Pattern,M...细胞局部二值模式(cell structured Local Binary Pattern)不能将人体图像的局部信息与全局信息相结合。针对这一不足,在细胞局部二值模式特征的基础上,提出多尺度细胞局部二值模式(Multi-scale cell structured Local Binary Pattern,MLBP)特征描述子,联合局部与全局信息,增加检测特征的信息量;另外,在MLBP的基础上进一步提出一个控制因子调节的新算子—可调多尺度细胞局部二值模式(Adjustable Multi-scale cell structured Local Binary Pattern,AMLBP),利用控制因子选择MLBP的最佳表征,提高人体检测的准确率。实验结果表明所提出的两个新特征较前人提出的特征更有效。展开更多
文摘为了准确、快速地检测作物叶部病害,提出一种基于自适应学习局部二值模式(adaptive learning local binary pattern,简称ALLBP)的苹果叶部病斑分割与检测方法。首先利用ALLBP获取正常叶片图像和病害叶片图像的特征差异,并确定病斑判断阈值,然后将待识别的叶片图像分割为大小相同的子块,再提取同样的特征与阈值进行比较,以判定各子块中是否有病斑。结果表明,该方法能够有效检测苹果病斑的分布特性,与局部二值模式(local binary pattern,简称LBP)和中心对称局部二值模式(center-symmetric local binary pattern,简称CS-LBP)相比,该方法具有更少的特征维数和更高的正确识别率。