针对化工间歇生产过程的多模态问题,为了提高故障检测性能,将滑动窗口技术与局部离群因子(LOF)算法相结合,提出了一种新的动态多向局部离群因子(dynamic multiway local outlier factor,DMLOF)用于工业过程在线故障检测的方法。首先将...针对化工间歇生产过程的多模态问题,为了提高故障检测性能,将滑动窗口技术与局部离群因子(LOF)算法相结合,提出了一种新的动态多向局部离群因子(dynamic multiway local outlier factor,DMLOF)用于工业过程在线故障检测的方法。首先将间歇过程数据展开成二维数据,利用滑动窗口技术分别在时间片内运用局部离群因子算法计算LOF统计量,并利用核密度估计(KDE)确定控制限。对于新来数据标准化处理后分别在相应窗口内投影,确定新数据的LOF统计量并与控制限比较进行故障检测。最后通过青霉素发酵过程的实验结果验证了该算法的有效性。展开更多
文摘针对化工间歇生产过程的多模态问题,为了提高故障检测性能,将滑动窗口技术与局部离群因子(LOF)算法相结合,提出了一种新的动态多向局部离群因子(dynamic multiway local outlier factor,DMLOF)用于工业过程在线故障检测的方法。首先将间歇过程数据展开成二维数据,利用滑动窗口技术分别在时间片内运用局部离群因子算法计算LOF统计量,并利用核密度估计(KDE)确定控制限。对于新来数据标准化处理后分别在相应窗口内投影,确定新数据的LOF统计量并与控制限比较进行故障检测。最后通过青霉素发酵过程的实验结果验证了该算法的有效性。