The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio...The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.展开更多
In this research, the affect of storage time and different metals concentration of copper and iron on gum formation in gas oil is investigated. A study of the affect of gum content on properties of sample is performed...In this research, the affect of storage time and different metals concentration of copper and iron on gum formation in gas oil is investigated. A study of the affect of gum content on properties of sample is performed, where the gas oil derived from (Kirkuk crude oil) have boiling point range (266-420)℃. For this purpose, a gas oil sample has been doped with these two metals ions at concentration levels of 0.5, 1.5, 2.5 and 3.5 μg mL-1. Washed gum content tests have been carried out using ASTM D-381 on samples stored for 8, 16, 24 and 32 days. The experimental results show that an increase in storage time and metal concentration strongly increases the rate of gum formation for all metal investigations and this increase in gum concentration affects the viscosity of samples towards increasing of viscosity.展开更多
基金Projects(51174236,51134003)supported by the National Natural Science Foundation of ChinaProject(2011CB606306)supported by the National Basic Research Program of ChinaProject(PMM-SKL-4-2012)supported by the Opening Project of State Key Laboratory of Porous Metal Materials(Northwest Institute for Nonferrous Metal Research),China
文摘The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.
文摘In this research, the affect of storage time and different metals concentration of copper and iron on gum formation in gas oil is investigated. A study of the affect of gum content on properties of sample is performed, where the gas oil derived from (Kirkuk crude oil) have boiling point range (266-420)℃. For this purpose, a gas oil sample has been doped with these two metals ions at concentration levels of 0.5, 1.5, 2.5 and 3.5 μg mL-1. Washed gum content tests have been carried out using ASTM D-381 on samples stored for 8, 16, 24 and 32 days. The experimental results show that an increase in storage time and metal concentration strongly increases the rate of gum formation for all metal investigations and this increase in gum concentration affects the viscosity of samples towards increasing of viscosity.