We have studied three plans for re-use of the abandoned mine roadway tunnels as an energy center. These are the thermostat plan, the thermal accumulator plan, and the CAES plan. Calculations show that the thermostat p...We have studied three plans for re-use of the abandoned mine roadway tunnels as an energy center. These are the thermostat plan, the thermal accumulator plan, and the CAES plan. Calculations show that the thermostat plan can provide over 15,000 m2 of building air-conditioning/heating load for each kilo- meter of roadway, but electric power is needed to run the system. Numerical research proved that the accumulation of hot water in the roadway for seasonal heating purposes (a temperature swing from 90 to 54 ℃) is a viable possibility. The CAES plan proposes using the discarded coal mine tunnel as a pea ing power station with an energy storage density over 7000 kj/m3. It can be concluded that presently abandoned coal mines could be reformed into future energy centers for a city.展开更多
For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformati...For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits.展开更多
基金supported financially by the National Natural Science Foundation of China (No. 50908225)
文摘We have studied three plans for re-use of the abandoned mine roadway tunnels as an energy center. These are the thermostat plan, the thermal accumulator plan, and the CAES plan. Calculations show that the thermostat plan can provide over 15,000 m2 of building air-conditioning/heating load for each kilo- meter of roadway, but electric power is needed to run the system. Numerical research proved that the accumulation of hot water in the roadway for seasonal heating purposes (a temperature swing from 90 to 54 ℃) is a viable possibility. The CAES plan proposes using the discarded coal mine tunnel as a pea ing power station with an energy storage density over 7000 kj/m3. It can be concluded that presently abandoned coal mines could be reformed into future energy centers for a city.
基金financially supported by the National Natural Science Foundation of China (Nos. 51474188, 51074140 and 51310105020)the Natural Science Foundation of Hebei Province (No. E2014203012)the Program for Taihang Scholars
文摘For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits.