以小波变换和偏移地震数据的奇异性分析为基础,开发了一种新的常规地震属性——SPICE(Spectral imaging of correlative events,相关同相轴的频谱成像)。该属性提供了地下层状模型,包含丰富的构造和地层细节,使得相干和阻抗属性更...以小波变换和偏移地震数据的奇异性分析为基础,开发了一种新的常规地震属性——SPICE(Spectral imaging of correlative events,相关同相轴的频谱成像)。该属性提供了地下层状模型,包含丰富的构造和地层细节,使得相干和阻抗属性更加突出。展开更多
13 earthquakes with M 〉 5.0 have been recorded in the northeast region of China since 1970, among which eight medium-strong earthquakes are independent in space and time. Studies of seismicity before these eight medi...13 earthquakes with M 〉 5.0 have been recorded in the northeast region of China since 1970, among which eight medium-strong earthquakes are independent in space and time. Studies of seismicity before these eight medium-strong earthquakes show that small earthquake activity was enhanced before the occurrences. Though seismicity increase is a common phenomenon in the northeast China region, we have difficulty in predicting the medium-strong earthquakes by this phenomenon alone. In order to predict medium-strong earthquakes through se|smicity increase, this paper tries to propose a new method that calculates small earthquake frequency through the changing pattern of small earthquake activities based on the characteristics of small earthquake activity in the northeast China region. The results show that we can get the obvious anomaly frequency of small earthquakes before medium-strong earthquakes through the new method, and can obtain a medium to short term anomaly index for the northeast China region.展开更多
基金sponsored by the 2013 Annual Earthquake Monitory,Forecasting and Research in Seismic Stations Fund,CEA
文摘13 earthquakes with M 〉 5.0 have been recorded in the northeast region of China since 1970, among which eight medium-strong earthquakes are independent in space and time. Studies of seismicity before these eight medium-strong earthquakes show that small earthquake activity was enhanced before the occurrences. Though seismicity increase is a common phenomenon in the northeast China region, we have difficulty in predicting the medium-strong earthquakes by this phenomenon alone. In order to predict medium-strong earthquakes through se|smicity increase, this paper tries to propose a new method that calculates small earthquake frequency through the changing pattern of small earthquake activities based on the characteristics of small earthquake activity in the northeast China region. The results show that we can get the obvious anomaly frequency of small earthquakes before medium-strong earthquakes through the new method, and can obtain a medium to short term anomaly index for the northeast China region.