提出一种新的通用旁瓣消除器结构,它利用广义奇异值分解(Generalized singular value decomposition,GSVD)技术,通过广义奇异向量的变换间接估计声源到麦克风之间的传递函数。不同噪声环境下的实验结果表明,与现有的各种GSC算法相比,该...提出一种新的通用旁瓣消除器结构,它利用广义奇异值分解(Generalized singular value decomposition,GSVD)技术,通过广义奇异向量的变换间接估计声源到麦克风之间的传递函数。不同噪声环境下的实验结果表明,与现有的各种GSC算法相比,该算法能够更有效地抑制混响和噪声,并且增强后的语音失真最小。展开更多
传统算法奇异值分解(singular value decomposition,SVD)低秩近似在图像处理等领域有巨大的潜力,但其并没有有效的利用图像本身的自然结构信息。针对上述问题,提出有限维交换半单代数,在此基础上提出广义奇异值分解(tensorial singular ...传统算法奇异值分解(singular value decomposition,SVD)低秩近似在图像处理等领域有巨大的潜力,但其并没有有效的利用图像本身的自然结构信息。针对上述问题,提出有限维交换半单代数,在此基础上提出广义奇异值分解(tensorial singular value decomposition, TSVD),并对二阶图像进行邻域拓展策略,将原图像的每个像素替换为广义标量。广义线性插值奇异值分解(tensorial linear interpolation singular value decomposition, TSVD-L)对广义标量进行线性插值处理,拓展阶数后的广义标量构成广义矩阵。以此为基础,通过不同阶数和尺寸的策略,将TSVD-L与传统算法SVD进行低秩近似重建,比较峰值信噪比结果,实验数据表明,在有限维交换半单代数之上的广义线性插值奇异值分解算法性能明显优于经典奇异值分解算法,且随着阶数的提升,TSVD-L的峰值信噪比完全优于SVD的峰值信噪比。同时TSVD-L比TSVD有一定的优越性。展开更多
高阶奇异值分解(Higher Order Singular Value Decomposition,HOSVD)是奇异值分解(Singular Value Decomposition,SVD)的扩展。为了提升HOSVD的性能,本文使用像素邻域策略将原始图像扩展至高阶图像,用固定大小的数组作为广义标量替代原...高阶奇异值分解(Higher Order Singular Value Decomposition,HOSVD)是奇异值分解(Singular Value Decomposition,SVD)的扩展。为了提升HOSVD的性能,本文使用像素邻域策略将原始图像扩展至高阶图像,用固定大小的数组作为广义标量替代原始图像中的经典标量,继而在有限维交换半单代数上提出广义高阶奇异值分解(Tensorial Higher-order Singular Value Decomposition,THOSVD),在公共数据集图像上进行图像重建。实验结果表明,广义算法THOSVD的图像重建性能优于经典HOSVD算法。展开更多
针对分布式多输入多输出(multi-input multi-output,MIMO)雷达测向中存在的数据信息提取不充分、运算量偏大等问题,开展了基于广义奇异值分解(generalized singular value decomposition,GSVD)的测向算法研究,以提高低信噪比条件下的角...针对分布式多输入多输出(multi-input multi-output,MIMO)雷达测向中存在的数据信息提取不充分、运算量偏大等问题,开展了基于广义奇异值分解(generalized singular value decomposition,GSVD)的测向算法研究,以提高低信噪比条件下的角度估计性能。首先,建立了分布式阵列MIMO雷达回波信号的统一化表征模型;其次,将分布式MIMO雷达系统接收阵列数据的多线程GSVD问题转换为一个联合优化问题,运用交替最小二乘(alternating least squares,ALS)技术实现阵列信号流行矩阵的拟合,并引入子空间类算法实现目标角度联合估计;最后,对优化问题增加l1范数约束,避免了每次迭代中进行的奇异值分解运算,降低了算法运算量。仿真实验从角度联合估计、均方误差、运算时间等方面验证了所提算法的有效性。展开更多
文摘提出一种新的通用旁瓣消除器结构,它利用广义奇异值分解(Generalized singular value decomposition,GSVD)技术,通过广义奇异向量的变换间接估计声源到麦克风之间的传递函数。不同噪声环境下的实验结果表明,与现有的各种GSC算法相比,该算法能够更有效地抑制混响和噪声,并且增强后的语音失真最小。
文摘传统算法奇异值分解(singular value decomposition,SVD)低秩近似在图像处理等领域有巨大的潜力,但其并没有有效的利用图像本身的自然结构信息。针对上述问题,提出有限维交换半单代数,在此基础上提出广义奇异值分解(tensorial singular value decomposition, TSVD),并对二阶图像进行邻域拓展策略,将原图像的每个像素替换为广义标量。广义线性插值奇异值分解(tensorial linear interpolation singular value decomposition, TSVD-L)对广义标量进行线性插值处理,拓展阶数后的广义标量构成广义矩阵。以此为基础,通过不同阶数和尺寸的策略,将TSVD-L与传统算法SVD进行低秩近似重建,比较峰值信噪比结果,实验数据表明,在有限维交换半单代数之上的广义线性插值奇异值分解算法性能明显优于经典奇异值分解算法,且随着阶数的提升,TSVD-L的峰值信噪比完全优于SVD的峰值信噪比。同时TSVD-L比TSVD有一定的优越性。
文摘高阶奇异值分解(Higher Order Singular Value Decomposition,HOSVD)是奇异值分解(Singular Value Decomposition,SVD)的扩展。为了提升HOSVD的性能,本文使用像素邻域策略将原始图像扩展至高阶图像,用固定大小的数组作为广义标量替代原始图像中的经典标量,继而在有限维交换半单代数上提出广义高阶奇异值分解(Tensorial Higher-order Singular Value Decomposition,THOSVD),在公共数据集图像上进行图像重建。实验结果表明,广义算法THOSVD的图像重建性能优于经典HOSVD算法。
文摘针对分布式多输入多输出(multi-input multi-output,MIMO)雷达测向中存在的数据信息提取不充分、运算量偏大等问题,开展了基于广义奇异值分解(generalized singular value decomposition,GSVD)的测向算法研究,以提高低信噪比条件下的角度估计性能。首先,建立了分布式阵列MIMO雷达回波信号的统一化表征模型;其次,将分布式MIMO雷达系统接收阵列数据的多线程GSVD问题转换为一个联合优化问题,运用交替最小二乘(alternating least squares,ALS)技术实现阵列信号流行矩阵的拟合,并引入子空间类算法实现目标角度联合估计;最后,对优化问题增加l1范数约束,避免了每次迭代中进行的奇异值分解运算,降低了算法运算量。仿真实验从角度联合估计、均方误差、运算时间等方面验证了所提算法的有效性。