针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Un...针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Uniform Selection Mechanism)自注意力机制搭建一个序列到序列(Seq2Seq)结构,用于提取长序列输入的特征;其次,设计“远轻近重”策略将多个短序列输入特征提取能力较强的长短时记忆(LSTM)模块提取的各时段数据特征进行重分配;最后,用重分配的特征增强提取的长序列输入特征,提高预测精度并实现时序预测。利用4个公开的时间序列数据集验证模型的有效性。实验结果表明,与综合表现次优的对比模型循环门单元(GRU)相比,SLTSFM的平均绝对误差(MAE)指标在4个数据集上的单变量时序预测分别减小了61.54%、13.48%、0.92%和19.58%,多变量时序预测分别减小了17.01%、18.13%、3.24%和6.73%。由此可见SLTSFM在提升较短的长序列时序预测精度方面的有效性。展开更多
[目的/意义]为更好地处理文本摘要任务中的未登录词(out of vocabulary, 00V ),同时避免摘要重复,提高文本摘要的质量,本文以解决00V问题和摘要自我重复问题为研究任务,进行抽象式中文文本摘要研究。[方法/过程]在序列到序列(sequence t...[目的/意义]为更好地处理文本摘要任务中的未登录词(out of vocabulary, 00V ),同时避免摘要重复,提高文本摘要的质量,本文以解决00V问题和摘要自我重复问题为研究任务,进行抽象式中文文本摘要研究。[方法/过程]在序列到序列(sequence to sequence, seq2seq)模型的基础上增加指向生成机制和覆盖处理机制,通过指向生成将未登录词拷贝到摘要中以解决未登录词问题,通过覆盖处理避免注意力机制(attentionmechanism)反复关注同一位置,以解决重复问题。将本文方法应用到LCSTS中文摘要数据集上进行实验,检验模型效果。[结果/结论]实验结果显示,该模型生成摘要的ROUGE ( recall -oriented understudy for gisting evaluation)分数高于传统的seq2seq模型以及抽取式文本摘要模型,表明指向生成和覆盖机制能够有效解决未登录词问题和摘要重复问题,从而显著提升文本摘要质量。展开更多
文摘针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Uniform Selection Mechanism)自注意力机制搭建一个序列到序列(Seq2Seq)结构,用于提取长序列输入的特征;其次,设计“远轻近重”策略将多个短序列输入特征提取能力较强的长短时记忆(LSTM)模块提取的各时段数据特征进行重分配;最后,用重分配的特征增强提取的长序列输入特征,提高预测精度并实现时序预测。利用4个公开的时间序列数据集验证模型的有效性。实验结果表明,与综合表现次优的对比模型循环门单元(GRU)相比,SLTSFM的平均绝对误差(MAE)指标在4个数据集上的单变量时序预测分别减小了61.54%、13.48%、0.92%和19.58%,多变量时序预测分别减小了17.01%、18.13%、3.24%和6.73%。由此可见SLTSFM在提升较短的长序列时序预测精度方面的有效性。
文摘[目的/意义]为更好地处理文本摘要任务中的未登录词(out of vocabulary, 00V ),同时避免摘要重复,提高文本摘要的质量,本文以解决00V问题和摘要自我重复问题为研究任务,进行抽象式中文文本摘要研究。[方法/过程]在序列到序列(sequence to sequence, seq2seq)模型的基础上增加指向生成机制和覆盖处理机制,通过指向生成将未登录词拷贝到摘要中以解决未登录词问题,通过覆盖处理避免注意力机制(attentionmechanism)反复关注同一位置,以解决重复问题。将本文方法应用到LCSTS中文摘要数据集上进行实验,检验模型效果。[结果/结论]实验结果显示,该模型生成摘要的ROUGE ( recall -oriented understudy for gisting evaluation)分数高于传统的seq2seq模型以及抽取式文本摘要模型,表明指向生成和覆盖机制能够有效解决未登录词问题和摘要重复问题,从而显著提升文本摘要质量。