针对传统深度网络模型难以精确提取建筑物边缘轮廓特征及对不同尺寸建筑物无法自适应提取的问题,提出一种膨胀卷积特征提取的多尺度特征融合深度神经网络模型(multiscale-feature fusion deep neural networks with dilated convolution...针对传统深度网络模型难以精确提取建筑物边缘轮廓特征及对不同尺寸建筑物无法自适应提取的问题,提出一种膨胀卷积特征提取的多尺度特征融合深度神经网络模型(multiscale-feature fusion deep neural networks with dilated convolution,MDNNet)对遥感图像建筑物自动分割的方法;首先在ResNet101模型中引入膨胀卷积扩大提取视野保留更多特征图像分辨率;其次利用多尺度特征融合模块获取多个尺度的建筑物特征并将不同尺度的特征融合;最终利用特征解码模块将特征图恢复到原始输入图像尺寸,实现遥感图像建筑物精确分割;在WHU遥感图像数据集的实验结果表明,提出模型有效克服道路、树木和阴影等因素影响,分割结果有效保留建筑物边界细节信息,有效提升分割精度,像素准确率PA达到0.864,平均交并比mIoU达到0.815,召回率Recall达到0.862。展开更多
作为城区主要目标之一,建筑物的检测和提取至关重要,而利用图像分割将建筑物从背景中分离出来是后续处理的基础。传统马尔科夫随机场(Markov Random Field,MRF)模型对合成孔径雷达(Synthetic Aperture Radar,SAR)图像进行建筑物分割时...作为城区主要目标之一,建筑物的检测和提取至关重要,而利用图像分割将建筑物从背景中分离出来是后续处理的基础。传统马尔科夫随机场(Markov Random Field,MRF)模型对合成孔径雷达(Synthetic Aperture Radar,SAR)图像进行建筑物分割时只利用了灰度信息,因此对灰度不均匀目标分割完整性较差,且利用最小能量准则分割时未考虑两部分随机场能量的相互关系,从而导致分割结果不能同时兼顾区域一致性与边缘细节性。为此,研究提出一种改进MRF的SAR图像建筑物分割方法。首先,通过在观测场引入由巴氏距离加权的纹理特征,实现对灰度不均匀建筑物的完整提取;其次,在两部分随机场能量中引入随迭代次数变化的权重,实现在建筑物密集区域保持边缘平滑的同时更好地抑制噪声。为了验证算法的有效性和实用性,对不同场景的SAR图像进行处理,结果表明:所提算法在不同场景中均能得到更好的分类正确率和Dice系数。展开更多
文摘针对传统深度网络模型难以精确提取建筑物边缘轮廓特征及对不同尺寸建筑物无法自适应提取的问题,提出一种膨胀卷积特征提取的多尺度特征融合深度神经网络模型(multiscale-feature fusion deep neural networks with dilated convolution,MDNNet)对遥感图像建筑物自动分割的方法;首先在ResNet101模型中引入膨胀卷积扩大提取视野保留更多特征图像分辨率;其次利用多尺度特征融合模块获取多个尺度的建筑物特征并将不同尺度的特征融合;最终利用特征解码模块将特征图恢复到原始输入图像尺寸,实现遥感图像建筑物精确分割;在WHU遥感图像数据集的实验结果表明,提出模型有效克服道路、树木和阴影等因素影响,分割结果有效保留建筑物边界细节信息,有效提升分割精度,像素准确率PA达到0.864,平均交并比mIoU达到0.815,召回率Recall达到0.862。
文摘作为城区主要目标之一,建筑物的检测和提取至关重要,而利用图像分割将建筑物从背景中分离出来是后续处理的基础。传统马尔科夫随机场(Markov Random Field,MRF)模型对合成孔径雷达(Synthetic Aperture Radar,SAR)图像进行建筑物分割时只利用了灰度信息,因此对灰度不均匀目标分割完整性较差,且利用最小能量准则分割时未考虑两部分随机场能量的相互关系,从而导致分割结果不能同时兼顾区域一致性与边缘细节性。为此,研究提出一种改进MRF的SAR图像建筑物分割方法。首先,通过在观测场引入由巴氏距离加权的纹理特征,实现对灰度不均匀建筑物的完整提取;其次,在两部分随机场能量中引入随迭代次数变化的权重,实现在建筑物密集区域保持边缘平滑的同时更好地抑制噪声。为了验证算法的有效性和实用性,对不同场景的SAR图像进行处理,结果表明:所提算法在不同场景中均能得到更好的分类正确率和Dice系数。