高效准确的短期电力负荷预测对提升新型电力系统经济运行十分重要。针对极端天气场景下负荷预测数据量较少、随机性较强的特点,提出一种基于张量低秩补全算法的短期负荷预测模型,并选取极端高温场景展开研究。首先,给出极端天气定义,并...高效准确的短期电力负荷预测对提升新型电力系统经济运行十分重要。针对极端天气场景下负荷预测数据量较少、随机性较强的特点,提出一种基于张量低秩补全算法的短期负荷预测模型,并选取极端高温场景展开研究。首先,给出极端天气定义,并基于改进型炎热指数和气温两项指标进行数据筛选;其次,提出一种基于张量的负荷数据补全模型,补全缺失数据;然后,通过Pearson相关性分析筛选输入特征量,构建基于长短时记忆(long short term memory, LSTM)网络和粗糙集理论(rough set theory, RST)的LSTM-RST短期负荷预测模型;最后,以苏州某地实际负荷数据设置算例进行验证,仿真结果表明,所提短期负荷预测方法具有较高的准确性。展开更多
Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values ...Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods.展开更多
文摘高效准确的短期电力负荷预测对提升新型电力系统经济运行十分重要。针对极端天气场景下负荷预测数据量较少、随机性较强的特点,提出一种基于张量低秩补全算法的短期负荷预测模型,并选取极端高温场景展开研究。首先,给出极端天气定义,并基于改进型炎热指数和气温两项指标进行数据筛选;其次,提出一种基于张量的负荷数据补全模型,补全缺失数据;然后,通过Pearson相关性分析筛选输入特征量,构建基于长短时记忆(long short term memory, LSTM)网络和粗糙集理论(rough set theory, RST)的LSTM-RST短期负荷预测模型;最后,以苏州某地实际负荷数据设置算例进行验证,仿真结果表明,所提短期负荷预测方法具有较高的准确性。
基金financially supported by the National Nautral Science Foundation of China(No.61703206)
文摘Non-convex methods play a critical role in low-rank tensor completion for their approximation to tensor rank is tighter than that of convex methods.But they usually cost much more time for calculating singular values of large tensors.In this paper,we propose a double transformed tubal nuclear norm(DTTNN)to replace the rank norm penalty in low rank tensor completion(LRTC)tasks.DTTNN turns the original non-convex penalty of a large tensor into two convex penalties of much smaller tensors,and it is shown to be an equivalent transformation.Therefore,DTTNN could take advantage of non-convex envelopes while saving time.Experimental results on color image and video inpainting tasks verify the effectiveness of DTTNN compared with state-of-the-art methods.