以大豆分离蛋白为原料,通过酸性偏移结合热诱导对其进行大豆分离蛋白微凝胶(soy protein isolate microgel,SPIM)化改性,利用荧光光谱、红外色谱、原子力学显微镜等探究蛋白质的结构变化、分子间相互作用、凝胶的微观形态、凝胶特性,考...以大豆分离蛋白为原料,通过酸性偏移结合热诱导对其进行大豆分离蛋白微凝胶(soy protein isolate microgel,SPIM)化改性,利用荧光光谱、红外色谱、原子力学显微镜等探究蛋白质的结构变化、分子间相互作用、凝胶的微观形态、凝胶特性,考察热诱导温度(25、45、55、65、75、85℃)对SPIM结构和特性的影响。结果表明:SPIM形成过程中二级结构β-折叠相对含量增多,静电相互作用、疏水相互作用、氢键作用参与了微凝胶的自组装;随着热诱导温度的升高,SPIM表面疏水性指数先增加后减小,热稳定性逐渐增强。与单独酸性偏移相比,酸性偏移结合75℃热诱导形成的微凝胶比表面积显著增大(P<0.05),乳化活性、乳化稳定性和持水性显著升高(P<0.05)。酸性偏移结合热诱导是一种有效调控蛋白质微凝胶结构和特性的方法,通过精准控温可以提升微凝胶的质量。展开更多
文摘以大豆分离蛋白为原料,通过酸性偏移结合热诱导对其进行大豆分离蛋白微凝胶(soy protein isolate microgel,SPIM)化改性,利用荧光光谱、红外色谱、原子力学显微镜等探究蛋白质的结构变化、分子间相互作用、凝胶的微观形态、凝胶特性,考察热诱导温度(25、45、55、65、75、85℃)对SPIM结构和特性的影响。结果表明:SPIM形成过程中二级结构β-折叠相对含量增多,静电相互作用、疏水相互作用、氢键作用参与了微凝胶的自组装;随着热诱导温度的升高,SPIM表面疏水性指数先增加后减小,热稳定性逐渐增强。与单独酸性偏移相比,酸性偏移结合75℃热诱导形成的微凝胶比表面积显著增大(P<0.05),乳化活性、乳化稳定性和持水性显著升高(P<0.05)。酸性偏移结合热诱导是一种有效调控蛋白质微凝胶结构和特性的方法,通过精准控温可以提升微凝胶的质量。