In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem in...In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem into a set of problems which are easier to solve.HPM produces analytical expressions for the solution to nonlinear differential equations.The obtained analytic solution is in the form of an infinite power series.In this work,the analytical solution obtained by using only two terms from HPM solution.Comparisons with the exact solution and the solution obtained by the Pade approximants and shooting method show the high accuracy,simplicity and efficiency of this method.展开更多
This paper explores the diffeomorphism of a backward stochastic ordinary differential equation (BSDE) to a system of semi-linear backward stochastic partial differential equations (BSPDEs), under the inverse of a stoc...This paper explores the diffeomorphism of a backward stochastic ordinary differential equation (BSDE) to a system of semi-linear backward stochastic partial differential equations (BSPDEs), under the inverse of a stochastic flow generated by an ordinary stochastic differential equation (SDE). The author develops a new approach to BSPDEs and also provides some new results. The adapted solution of BSPDEs in terms of those of SDEs and BSDEs is constructed. This brings a new insight on BSPDEs, and leads to a probabilistic approach. As a consequence, the existence, uniqueness, and regularity results are obtained for the (classical, Sobolev, and distributional) solution of BSPDEs.The dimension of the space variable x is allowed to be arbitrary n, and BSPDEs are allowed to be nonlinear in both unknown variables, which implies that the BSPDEs may be nonlinear in the gradient. Due to the limitation of space, however, this paper concerns only classical solution of BSPDEs under some more restricted assumptions.展开更多
We study conformal vector fields on a Finsler manifold whose metric is defined by a Riemannian metric, a 1-form and its norm. We find PDEs characterizing conformal vector fields. Then we obtain the explicit expression...We study conformal vector fields on a Finsler manifold whose metric is defined by a Riemannian metric, a 1-form and its norm. We find PDEs characterizing conformal vector fields. Then we obtain the explicit expressions of conformal vector fields for certain spherically symmetric metrics on R^n.展开更多
A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate e...A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate expression of multiple integrals of a continuous function defined in a three-dimensional bounded domain is proposed by combining wavelet expansion and Lagrange boundary extension.Through applying such an integral technique,during the solution of nonlinear partial differential equations,the unknown function and its lower-order partial derivatives can be approximately expressed by its highest-order partial derivative values at nodes.A set of nonlinear algebraic equations with respect to these nodal values of the highest-order partial derivative is obtained using a collocation method.The validation and convergence of the proposed method are examined through several benchmark problems,including the eighth-order two-dimensional and fourth-order three-dimensional boundary value problems and the large deflection bending of von Karman plates.Results demonstrate that the present method has higher accuracy and convergence rate than most existing numerical methods.Most importantly,the convergence rate of the proposed method seems to be independent of the order of the differential equations,because it is always sixth order for second-,fourth-,sixth-,and even eighth-order problems.展开更多
基金Supported by the National Nature Science Foundation of China (10961019) of Inner Mongolia Universitythe Talent Introduction Project of Dezhou University
文摘In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem into a set of problems which are easier to solve.HPM produces analytical expressions for the solution to nonlinear differential equations.The obtained analytic solution is in the form of an infinite power series.In this work,the analytical solution obtained by using only two terms from HPM solution.Comparisons with the exact solution and the solution obtained by the Pade approximants and shooting method show the high accuracy,simplicity and efficiency of this method.
基金Project supported by the National Natural Science Foundation of China (No.10325101, No.101310310)the Science Foundation of the Ministry of Education of China (No. 20030246004).
文摘This paper explores the diffeomorphism of a backward stochastic ordinary differential equation (BSDE) to a system of semi-linear backward stochastic partial differential equations (BSPDEs), under the inverse of a stochastic flow generated by an ordinary stochastic differential equation (SDE). The author develops a new approach to BSPDEs and also provides some new results. The adapted solution of BSPDEs in terms of those of SDEs and BSDEs is constructed. This brings a new insight on BSPDEs, and leads to a probabilistic approach. As a consequence, the existence, uniqueness, and regularity results are obtained for the (classical, Sobolev, and distributional) solution of BSPDEs.The dimension of the space variable x is allowed to be arbitrary n, and BSPDEs are allowed to be nonlinear in both unknown variables, which implies that the BSPDEs may be nonlinear in the gradient. Due to the limitation of space, however, this paper concerns only classical solution of BSPDEs under some more restricted assumptions.
文摘We study conformal vector fields on a Finsler manifold whose metric is defined by a Riemannian metric, a 1-form and its norm. We find PDEs characterizing conformal vector fields. Then we obtain the explicit expressions of conformal vector fields for certain spherically symmetric metrics on R^n.
基金supported by the National Natural Science Foundation of China(Grant Nos.11925204 and 12172154)the 111 Project(Grant No.B14044)the National Key Project of China(Grant No.GJXM92579).
文摘A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate expression of multiple integrals of a continuous function defined in a three-dimensional bounded domain is proposed by combining wavelet expansion and Lagrange boundary extension.Through applying such an integral technique,during the solution of nonlinear partial differential equations,the unknown function and its lower-order partial derivatives can be approximately expressed by its highest-order partial derivative values at nodes.A set of nonlinear algebraic equations with respect to these nodal values of the highest-order partial derivative is obtained using a collocation method.The validation and convergence of the proposed method are examined through several benchmark problems,including the eighth-order two-dimensional and fourth-order three-dimensional boundary value problems and the large deflection bending of von Karman plates.Results demonstrate that the present method has higher accuracy and convergence rate than most existing numerical methods.Most importantly,the convergence rate of the proposed method seems to be independent of the order of the differential equations,because it is always sixth order for second-,fourth-,sixth-,and even eighth-order problems.