近年来极端暴雨天气与自然灾害频发,导致农田损毁,影响耕作。该研究利用高精度农田数字地形模型(Farmland Digital Terrain Model,FDTM),基于地形因子综合属性提出一种识别农田微地形特征(凸起特征及洼地特征)的方法。首先,基于SfM(Stru...近年来极端暴雨天气与自然灾害频发,导致农田损毁,影响耕作。该研究利用高精度农田数字地形模型(Farmland Digital Terrain Model,FDTM),基于地形因子综合属性提出一种识别农田微地形特征(凸起特征及洼地特征)的方法。首先,基于SfM(Structure from Motion)技术处理试验田的航拍图像,获取高精度农田FDTM,分析FDTM的高程方差随局部窗口尺度的变化趋势,确定分析窗口的尺度区间为31像素×31像素至51像素×51像素。其次,选择高程、地形起伏度和坡度综合评价在51像素×51像素窗口下提取的315个高程极值点,获取多窗口地形因子综合隶属度。最后,根据斯特吉斯公式确定阈值为0.627,提取16个农田凸起特征顶点,并结合等高线图识别凸起特征的外形轮廓;同理,建立反转数字地形模型(Reverse-FDTM,RFDTM),将FDTM中的洼地特征转变为RFDTM中的凸起特征,识别9个农田洼地特征。研究结果可为农田复垦及精准土地平整作业提供理论依据与方法支持。展开更多
The comparative studies on micromorphological features in diagnostic horizons of Stagnic Anthrosols, Ustic Ferrosols and Ustic Vertosols in southwestern China were conducted to underpin the rationale for Chinese Soil ...The comparative studies on micromorphological features in diagnostic horizons of Stagnic Anthrosols, Ustic Ferrosols and Ustic Vertosols in southwestern China were conducted to underpin the rationale for Chinese Soil Taxonomy. The following findings were explored: (1) Stagnic Anthrosols had the specific micromorphological features, e.g., the humic formation in anthrostagnic epipedon, the platy structures in plow subhorizon, the secondary formation of ferromanganese and the weakly optical-orientation clay domains in hydragric horizon, etc.: (2) The groundmasses of ferric horizon in Ustic Ferrosols appeared in hue of 2.5YR or redder, and had pellicular grain structure; (3) Ustic Vertosols had a crust horizon (Acr), and crack structure dominated in Acr and angular blocky structure in disturbed horizon; (4) Because of the distinct differences in micromorphological features among these three soils, the specific micromorphological features might be employed as diagnostic horizons to differentiate soils while the quantifiable micromorphological features might potentially be selected as diagnostic indices for Chinese soil taxonomic classification.展开更多
文摘近年来极端暴雨天气与自然灾害频发,导致农田损毁,影响耕作。该研究利用高精度农田数字地形模型(Farmland Digital Terrain Model,FDTM),基于地形因子综合属性提出一种识别农田微地形特征(凸起特征及洼地特征)的方法。首先,基于SfM(Structure from Motion)技术处理试验田的航拍图像,获取高精度农田FDTM,分析FDTM的高程方差随局部窗口尺度的变化趋势,确定分析窗口的尺度区间为31像素×31像素至51像素×51像素。其次,选择高程、地形起伏度和坡度综合评价在51像素×51像素窗口下提取的315个高程极值点,获取多窗口地形因子综合隶属度。最后,根据斯特吉斯公式确定阈值为0.627,提取16个农田凸起特征顶点,并结合等高线图识别凸起特征的外形轮廓;同理,建立反转数字地形模型(Reverse-FDTM,RFDTM),将FDTM中的洼地特征转变为RFDTM中的凸起特征,识别9个农田洼地特征。研究结果可为农田复垦及精准土地平整作业提供理论依据与方法支持。
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-409)
文摘The comparative studies on micromorphological features in diagnostic horizons of Stagnic Anthrosols, Ustic Ferrosols and Ustic Vertosols in southwestern China were conducted to underpin the rationale for Chinese Soil Taxonomy. The following findings were explored: (1) Stagnic Anthrosols had the specific micromorphological features, e.g., the humic formation in anthrostagnic epipedon, the platy structures in plow subhorizon, the secondary formation of ferromanganese and the weakly optical-orientation clay domains in hydragric horizon, etc.: (2) The groundmasses of ferric horizon in Ustic Ferrosols appeared in hue of 2.5YR or redder, and had pellicular grain structure; (3) Ustic Vertosols had a crust horizon (Acr), and crack structure dominated in Acr and angular blocky structure in disturbed horizon; (4) Because of the distinct differences in micromorphological features among these three soils, the specific micromorphological features might be employed as diagnostic horizons to differentiate soils while the quantifiable micromorphological features might potentially be selected as diagnostic indices for Chinese soil taxonomic classification.