A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, ...A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, was obtained under a mild synthesis condition. The titled compound is crystallized in a monoclinic system, space group P2(1)/c with a=1.584 7(7) nm, b=1.426 7(6) nm, c=1.936 3(6) nm, β=113.186(7)°, V=4.024 6(3) nm 3, Z=4, D X=1.947 mg/m 3, M r=1 179.92, μ=1.662 mm -1, F(000)=2 344, R=0.074 8, wR=0.215 1. Three cadmium centers link with each other through BDC or BTC ligand to form a 3-D open framework.展开更多
The title compound [Zn(Py) 2L] n(L=1,2′-ferrocenedicarboxylate) was synthesized under mild conditions and its crystal structure was characterized. It crystallizes in a monoclinic system, space group C2/c with the cel...The title compound [Zn(Py) 2L] n(L=1,2′-ferrocenedicarboxylate) was synthesized under mild conditions and its crystal structure was characterized. It crystallizes in a monoclinic system, space group C2/c with the cell parameters a=1.683 0(5) nm, b=1.380 4(3) nm, c=1.746 2(3) nm, β=108.78(2)°, V=3.840 8(15) nm 3, Z=8, M r=485.52, T=293(2) K, D c=3.359 Mg/m 3, μ= 4.073 mm -1, F(000)=3 872, R 1=0.040 1, wR 2=0.113 2. The compound exhibits an unusual one-dimensional chain consisting of two zigzag chains.展开更多
In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the s...In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.展开更多
文摘A new inorganic-organic hybrid framework microporous material Cd 3(BDC) 0.5(BTC) 2·(DMF)(H 2O)·3DMF·H 3O·H 2O, in which two kinds of carboxylate ligands coordinate with cadmium ions synchronously, was obtained under a mild synthesis condition. The titled compound is crystallized in a monoclinic system, space group P2(1)/c with a=1.584 7(7) nm, b=1.426 7(6) nm, c=1.936 3(6) nm, β=113.186(7)°, V=4.024 6(3) nm 3, Z=4, D X=1.947 mg/m 3, M r=1 179.92, μ=1.662 mm -1, F(000)=2 344, R=0.074 8, wR=0.215 1. Three cadmium centers link with each other through BDC or BTC ligand to form a 3-D open framework.
文摘The title compound [Zn(Py) 2L] n(L=1,2′-ferrocenedicarboxylate) was synthesized under mild conditions and its crystal structure was characterized. It crystallizes in a monoclinic system, space group C2/c with the cell parameters a=1.683 0(5) nm, b=1.380 4(3) nm, c=1.746 2(3) nm, β=108.78(2)°, V=3.840 8(15) nm 3, Z=8, M r=485.52, T=293(2) K, D c=3.359 Mg/m 3, μ= 4.073 mm -1, F(000)=3 872, R 1=0.040 1, wR 2=0.113 2. The compound exhibits an unusual one-dimensional chain consisting of two zigzag chains.
基金Project(52202455)supported by the National Natural Science Foundation of ChinaProject(23A0017)supported by the Key Project of Scientific Research Project of Hunan Provincial Department of Education,China。
文摘In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.