The hyperspectral reflectance of the canopy and the leaves on the main stemfor six varieties, two each of rice corn, and cotton crops, were measured at different growth stageswith an ASD FieldSpec Pro FR^(TM) to analy...The hyperspectral reflectance of the canopy and the leaves on the main stemfor six varieties, two each of rice corn, and cotton crops, were measured at different growth stageswith an ASD FieldSpec Pro FR^(TM) to analyze red edge characteristics forleaf area indices (LAI),aboveground biomass, as well as the chlorophyll, carotenoid, and nitrogen content, emphasizingcomparative differences on the red edge parameters. The results showed a 'double peak' phenomenonfor the red edge of the canopy spectra but not for the leaves. There were 'increase' and 'decrease'change rules for the red edge position, lambda_r, the red edge slope, D lambda_r, and the red edgearea, S_r, of the canopy spectra for all 3 crops with a 'blue shift' for lambda_r of the leafspectra for all 3 crops as the development stages progressed. For rice, corn, and cotton the LAI andfresh leaf mass had highly significant correlations (P < 0.01) to the red edge parameters lambda_r,D lambda_r, and S_r of their canopy spectra. Additionally, for all crops the chlorophyll-a,chlorophyll-b, total chlorophyll, and carotenoid content of the leaves all had highly significant (P< 0.01) correlations to their lambda_r. For rice, the nitrogen content of the leaves in g kg^(-1)and phytomassfor a unit area of land in g m^(-2) also had a highly significant (P < 0.01)correlation to lambda_r, D lambda_r lambda_r, and S_r of the canopy spectra.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 40171065 and 40271078) the National '863' Project of China (Nos. 2002AA243011 and 2002AA130010).
文摘The hyperspectral reflectance of the canopy and the leaves on the main stemfor six varieties, two each of rice corn, and cotton crops, were measured at different growth stageswith an ASD FieldSpec Pro FR^(TM) to analyze red edge characteristics forleaf area indices (LAI),aboveground biomass, as well as the chlorophyll, carotenoid, and nitrogen content, emphasizingcomparative differences on the red edge parameters. The results showed a 'double peak' phenomenonfor the red edge of the canopy spectra but not for the leaves. There were 'increase' and 'decrease'change rules for the red edge position, lambda_r, the red edge slope, D lambda_r, and the red edgearea, S_r, of the canopy spectra for all 3 crops with a 'blue shift' for lambda_r of the leafspectra for all 3 crops as the development stages progressed. For rice, corn, and cotton the LAI andfresh leaf mass had highly significant correlations (P < 0.01) to the red edge parameters lambda_r,D lambda_r, and S_r of their canopy spectra. Additionally, for all crops the chlorophyll-a,chlorophyll-b, total chlorophyll, and carotenoid content of the leaves all had highly significant (P< 0.01) correlations to their lambda_r. For rice, the nitrogen content of the leaves in g kg^(-1)and phytomassfor a unit area of land in g m^(-2) also had a highly significant (P < 0.01)correlation to lambda_r, D lambda_r lambda_r, and S_r of the canopy spectra.