文章主要研究了不等价Dy3+离子掺杂的Ca1-xDyxMnO3样品的微波吸收性能。利用固相反应法制备不同Dy3+浓度掺杂的Ca1−xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品,分析Dy3+离子掺杂对Ca1−xDyxMnO3样品在晶体结构、微观形貌、电磁参数以及吸...文章主要研究了不等价Dy3+离子掺杂的Ca1-xDyxMnO3样品的微波吸收性能。利用固相反应法制备不同Dy3+浓度掺杂的Ca1−xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品,分析Dy3+离子掺杂对Ca1−xDyxMnO3样品在晶体结构、微观形貌、电磁参数以及吸波性能等方面的影响。实验结果表明,随着Dy3+离子掺杂浓度的提高,样品颗粒尺寸减小,介电常数实部增大,吸波性能得到增强。当Dy3+离子掺杂浓度为5%时,样品吸波性能最佳,在频率2~18 GHz范围内,最大有效吸波带宽达到2.2 GHz,最小反射损耗可达−39.72 dB。文章利用不等价Dy3+离子掺杂有效提高吸波性能,拓宽了CaMnO3材料在微波吸收领域的潜在应用。This paper mainly studies the microwave absorption properties of Ca1−xDyxMnO3 samples doped with non-equivalent Dy3+ ions. Samples of Ca1−xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%) doped with various concentrations of Dy3+ ions were prepared using the solid-state reaction method. The effects of Dy3+ ion doping on the crystal structure, micromorphology, electromagnetic parameters, and microwave absorption properties of the Ca1−xDyxMnO3 samples were analyzed. The experimental results indicate that as the doping concentration of Dy3+ ions increases, the particle size of the samples decreases, the real part of the permittivity increases, and the microwave absorption properties are enhanced. When the doping concentration of Dy3+ ions is 5%, the samples exhibit the best microwave absorption performance, with a maximum effective absorption bandwidth of 2.2 GHz and a minimum reflection loss of −39.72 dB within the frequency range of 2~18 GHz. This paper effectively improves microwave absorption performance through the doping of non-equivalent Dy3+ ions, broadening the potential applications of CaMnO3 materials in the field of microwave absorption.展开更多
The preparation and microwave absorbing behavior of micrometric silica modified platelet iron particles (SMPLIP) were investigated. Through precipitation, hydrothermal reaction, silica modification and reduction with ...The preparation and microwave absorbing behavior of micrometric silica modified platelet iron particles (SMPLIP) were investigated. Through precipitation, hydrothermal reaction, silica modification and reduction with hydrogen, micrometric porous SMPLIP were yielded. The permittivity values of SMPLIP had been significantly decreased due to the presence of silica. Measurements and calculations showed that a 1.93mm thick sample containing SMPLIP as much as 60%by weight was capable of absorbing X band(8.2~12.4GHz) microwaves with reflection loss being greater than -10dB within the frequency range of 8.2~11.36GHz, while the maximum reflection loss was -14.8dB at 9.4GHz. The results had also shown that it was practicable to prepare thin, light weight microwave absorbent with SMPLIP.展开更多
文摘文章主要研究了不等价Dy3+离子掺杂的Ca1-xDyxMnO3样品的微波吸收性能。利用固相反应法制备不同Dy3+浓度掺杂的Ca1−xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品,分析Dy3+离子掺杂对Ca1−xDyxMnO3样品在晶体结构、微观形貌、电磁参数以及吸波性能等方面的影响。实验结果表明,随着Dy3+离子掺杂浓度的提高,样品颗粒尺寸减小,介电常数实部增大,吸波性能得到增强。当Dy3+离子掺杂浓度为5%时,样品吸波性能最佳,在频率2~18 GHz范围内,最大有效吸波带宽达到2.2 GHz,最小反射损耗可达−39.72 dB。文章利用不等价Dy3+离子掺杂有效提高吸波性能,拓宽了CaMnO3材料在微波吸收领域的潜在应用。This paper mainly studies the microwave absorption properties of Ca1−xDyxMnO3 samples doped with non-equivalent Dy3+ ions. Samples of Ca1−xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%) doped with various concentrations of Dy3+ ions were prepared using the solid-state reaction method. The effects of Dy3+ ion doping on the crystal structure, micromorphology, electromagnetic parameters, and microwave absorption properties of the Ca1−xDyxMnO3 samples were analyzed. The experimental results indicate that as the doping concentration of Dy3+ ions increases, the particle size of the samples decreases, the real part of the permittivity increases, and the microwave absorption properties are enhanced. When the doping concentration of Dy3+ ions is 5%, the samples exhibit the best microwave absorption performance, with a maximum effective absorption bandwidth of 2.2 GHz and a minimum reflection loss of −39.72 dB within the frequency range of 2~18 GHz. This paper effectively improves microwave absorption performance through the doping of non-equivalent Dy3+ ions, broadening the potential applications of CaMnO3 materials in the field of microwave absorption.
文摘The preparation and microwave absorbing behavior of micrometric silica modified platelet iron particles (SMPLIP) were investigated. Through precipitation, hydrothermal reaction, silica modification and reduction with hydrogen, micrometric porous SMPLIP were yielded. The permittivity values of SMPLIP had been significantly decreased due to the presence of silica. Measurements and calculations showed that a 1.93mm thick sample containing SMPLIP as much as 60%by weight was capable of absorbing X band(8.2~12.4GHz) microwaves with reflection loss being greater than -10dB within the frequency range of 8.2~11.36GHz, while the maximum reflection loss was -14.8dB at 9.4GHz. The results had also shown that it was practicable to prepare thin, light weight microwave absorbent with SMPLIP.