卫星被动微波遥感土壤湿度,是准确分析大空间尺度上陆表水分变化信息的有效手段.美国航天局(NASA)发布的基于AMSR-E观测亮温资料的全球土壤湿度反演产品,在蒙古干旱区的实际精度并不令人满意.本文基于对地表微波辐射传输中地表粗糙度和...卫星被动微波遥感土壤湿度,是准确分析大空间尺度上陆表水分变化信息的有效手段.美国航天局(NASA)发布的基于AMSR-E观测亮温资料的全球土壤湿度反演产品,在蒙古干旱区的实际精度并不令人满意.本文基于对地表微波辐射传输中地表粗糙度和植被层影响的简化处理方法,采用AMSR-E的6.9GHz,10.7GHz和18.7GHz之V极化亮温资料,应用多频率反演算法,并以国际能量和水循环协同观测计划(The CoordinatedEnergy and Water Cycle Observations Project)即CEOP实验在蒙古国东部荒漠地区的地面实验资料作为先验知识,获取被动微波遥感模型的优化参数,以期获得蒙古干旱区精度更高的土壤湿度遥感估算结果.分析表明,本文方法反演的白天和夜间土壤湿度结果与地面验证值之间的均方根误差(RMSE)接近0.030cm3/cm3,证明所用方法在不需要其他辅助资料或参数帮助下,可较精确地反演干旱区表层土壤湿度信息,能够全天候、动态监测大空间尺度的土壤湿度变化,可为干旱区气候变化研究及陆面过程模拟和数据同化研究提供高精度的表层土壤湿度初始场资料.展开更多
雪深(snow depth,SD)和雪水当量(snow water equivalent,SWE)是气候水文研究中的重要参数,在雪灾监测中尤为重要。首先,简要介绍了被动微波遥感SD和SWE反演算法的物理基础——积雪微波辐射传输模型,分析了不同微波频段、不同特点的积雪...雪深(snow depth,SD)和雪水当量(snow water equivalent,SWE)是气候水文研究中的重要参数,在雪灾监测中尤为重要。首先,简要介绍了被动微波遥感SD和SWE反演算法的物理基础——积雪微波辐射传输模型,分析了不同微波频段、不同特点的积雪微波辐射和散射特性。然后,根据前人的研究从数学角度将反演算法分为线性亮温梯度法和基于先验知识法,总结了2类算法的优势和局限性:线性亮温梯度法相对简单、速度快,一般只适用于特定的研究区;先验知识法需要获取研究区的样本数据,并反复训练才能达到较好的精度,但对样本的独立性及其均值差异显著性的要求较高。最后,重点介绍了我国风云三号微波成像仪(FY-3 MWRI)的全球SD和SWE反演算法和针对中国区域的改进算法,并对未来的研究热点进行了展望。展开更多
文摘卫星被动微波遥感土壤湿度,是准确分析大空间尺度上陆表水分变化信息的有效手段.美国航天局(NASA)发布的基于AMSR-E观测亮温资料的全球土壤湿度反演产品,在蒙古干旱区的实际精度并不令人满意.本文基于对地表微波辐射传输中地表粗糙度和植被层影响的简化处理方法,采用AMSR-E的6.9GHz,10.7GHz和18.7GHz之V极化亮温资料,应用多频率反演算法,并以国际能量和水循环协同观测计划(The CoordinatedEnergy and Water Cycle Observations Project)即CEOP实验在蒙古国东部荒漠地区的地面实验资料作为先验知识,获取被动微波遥感模型的优化参数,以期获得蒙古干旱区精度更高的土壤湿度遥感估算结果.分析表明,本文方法反演的白天和夜间土壤湿度结果与地面验证值之间的均方根误差(RMSE)接近0.030cm3/cm3,证明所用方法在不需要其他辅助资料或参数帮助下,可较精确地反演干旱区表层土壤湿度信息,能够全天候、动态监测大空间尺度的土壤湿度变化,可为干旱区气候变化研究及陆面过程模拟和数据同化研究提供高精度的表层土壤湿度初始场资料.
文摘雪深(snow depth,SD)和雪水当量(snow water equivalent,SWE)是气候水文研究中的重要参数,在雪灾监测中尤为重要。首先,简要介绍了被动微波遥感SD和SWE反演算法的物理基础——积雪微波辐射传输模型,分析了不同微波频段、不同特点的积雪微波辐射和散射特性。然后,根据前人的研究从数学角度将反演算法分为线性亮温梯度法和基于先验知识法,总结了2类算法的优势和局限性:线性亮温梯度法相对简单、速度快,一般只适用于特定的研究区;先验知识法需要获取研究区的样本数据,并反复训练才能达到较好的精度,但对样本的独立性及其均值差异显著性的要求较高。最后,重点介绍了我国风云三号微波成像仪(FY-3 MWRI)的全球SD和SWE反演算法和针对中国区域的改进算法,并对未来的研究热点进行了展望。