Selected trace metals (Pb, Cd, Cu, Hg) and arsenic in seawater and surface sediments of Laizhou Bay were determined, to evaluate their spatial distribution, pollution risk and potential ecological risk. Concentratio...Selected trace metals (Pb, Cd, Cu, Hg) and arsenic in seawater and surface sediments of Laizhou Bay were determined, to evaluate their spatial distribution, pollution risk and potential ecological risk. Concentrations of the elements were 0.56-2.07, 0.14-0.38, 12.70-18.40, 0.014-0.094, and 1.13- 2.37 μg/L in the seawater and 8.94-32.2, 0.18-0.67, 4.51-30.5, 0.006-0.058, and 5.75-15.3 mg/kg in sediments for Pb, Cd, Cu, Hg and As, respectively. High concentrations of the trace metals and arsenic in seawater and surface sediments were generally observed near the fiver estuary. The pollution risk result of the elements showed that Cu was the prominent trace metal pollutant in seawater, followed by Hg, Pb, Cd and As. The metal complex pollution index in seawater was at a medium level. The most important trace metal pollutant in sediments was Cd, followed by As, Cu, Pb, and Hg. Our pollution assessment suggests that trace metal pollution in Laizhou Bay sediments was at a low level. The potential ecological risk was also low in surface sediment.展开更多
Surface sediment samples collected off the Huanghe (Yellow) River mouth during the period 2007-2009 were analyzed for major and trace element concentrations. Concentrations of 16 elements were measured using X-ray f...Surface sediment samples collected off the Huanghe (Yellow) River mouth during the period 2007-2009 were analyzed for major and trace element concentrations. Concentrations of 16 elements were measured using X-ray fluorescence spectrometry. Results demonstrate that sediment grain size is the dominant factor controlling the spatial variations of elemental concentrations. Correlation and cluster analyses allowed classification of the study area into four geochemical regions: Regions Ⅰ and Ⅲare characterized by high concentrations ofAl2O3, Fe2O3, MgO, Na2O, K2O, Cr, Cu, Mn, Ni, Pb, V, and Zn, and contain fine-grained sediments with mean grain size (Mz)〈22 μm; and; Regions Ⅱ and Ⅳcontain mostly coarse-grained sediments, and are characterized by high concentrations of SiO2, Na2O, and Zr. The sediment entering the sea from the Huanghe River and its tributaries is enriched in Ca. Thus, the Ca/Al ratio was used as an indicator of the proportion of sediments in the study area that originated from the Huanghe River. Ca/Al ratios decrease from Regions Ⅰ and Ⅱ(located in the nearshore zone of the Huanghe River delta) to Regions Ⅲand Ⅳ(distributed in the offshore zone of the northern Huanghe River delta, southern and southeastern Laizhou Bay area).展开更多
A total of 43 sediment samples were collected at Kemaman coast, Terengganu, by using Smith Mclntyre grab. These sediments were analyzed to determine the grain size, sediment texture and metallic trace elements. Lazer ...A total of 43 sediment samples were collected at Kemaman coast, Terengganu, by using Smith Mclntyre grab. These sediments were analyzed to determine the grain size, sediment texture and metallic trace elements. Lazer diffraction method using PSA (particle size analyzer) was used to determine the grain size and sediment texture. Teflon bomb was used to digest the sediments for metallic trace elements concentration. Results showed that the study area was dominated with sand particles (60.5%) followed by loamy sand (20.9%), sandy clay (16.3%) and silt loam (2.3%). On the other hand, the average concentrations of each metallic trace elements were 0.12 pg/g for Cd; 36.6 lag/g for Cr; 9.51 pg/g for Cu; 11.6 ~tg/g for N: 41.5 ~tg/g for Zn and 29.3/ag/g for Pb. Based on the results, it was found out that coarse sediments showed lower levels of metallic trace elements and higher levels in fine sediments. In addition, enrichment factor was calculated to assess the pollution status of the study area. Based on the calculation, the enrichment of metallic trace elements ranked in the following order: Pb 〉 Cd 〉 Zn 〉 Cu 〉 Ni 〉 Cr. The significant enrichment of Pb and moderate enrichment of Cd and Zn indicated that there are anthropogenic inputs while the rest of the metals can be considered from natural sources although there are effects of anthropogenic inputs in some sampling location.展开更多
Sediment samples obtained from the South Mid-Atlantic Ridge were analyzed for the major and trace elements by inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. R...Sediment samples obtained from the South Mid-Atlantic Ridge were analyzed for the major and trace elements by inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. Results revealed that the contents of elements(e.g., Fe, Mn, Cu, Zn, V, Co) were high in samples 22V-TVG10 and 26V-TVG05 from the sites near the hydrothermal areas, and low in sample 22V-TVG14, which was collected far from the hydrothermal areas. The contents of Ca, Sr and Ba in the samples showed opposite trends. A positive correlation between the concentrations of metallic elements(Cu, Zn, Co, Ni, Pb, V) and Fe in the samples were observed. These results are consistent with chemical evolution of the dispersing hydrothermal plume.展开更多
Minor and trace elements composition of bottom sediments from the bay of Asunci6n on the Paraguay River have been investigated by XRF (X-ray fluorescence) techniques to determine their correlation as well as provena...Minor and trace elements composition of bottom sediments from the bay of Asunci6n on the Paraguay River have been investigated by XRF (X-ray fluorescence) techniques to determine their correlation as well as provenance. The analysis of complex spectra was performed by the AXIL software and the quantitative analysis by the QAES (quantitative analysis of environmental samples ) software. Analyzed trace elements were the refractory elements Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Zr, Th and others with high field stabilization energy as Cr, Ni, Cu, together with Zn, As, Cd, Pb. Minor elements were Ti, Mn, Fe which are often to the above refractories related. According to their normalized spidergrams, two sets of sediments can be differentiated. Those that show LREE (light rare earth elements) enrichment, negative Nb and Ti anomalies and no spike at Zr and those that have spidergrams very alike, with strong negative anomalies at Nb, Nd and Ti whereas a of Fe versus the refractory elements except Fe-Zr in which correlation seem to be low. positive spike at Zr. In both set, there are strong correlations is negative. Potential hazards of toxic elements in sediments展开更多
基金Supported by the Shandong Key Laboratory of Marine Ecological Restoration,Shandong Marine Fisheries Research Institute(No.201211)the National Natural Science Foundation of China(No.41206120)
文摘Selected trace metals (Pb, Cd, Cu, Hg) and arsenic in seawater and surface sediments of Laizhou Bay were determined, to evaluate their spatial distribution, pollution risk and potential ecological risk. Concentrations of the elements were 0.56-2.07, 0.14-0.38, 12.70-18.40, 0.014-0.094, and 1.13- 2.37 μg/L in the seawater and 8.94-32.2, 0.18-0.67, 4.51-30.5, 0.006-0.058, and 5.75-15.3 mg/kg in sediments for Pb, Cd, Cu, Hg and As, respectively. High concentrations of the trace metals and arsenic in seawater and surface sediments were generally observed near the fiver estuary. The pollution risk result of the elements showed that Cu was the prominent trace metal pollutant in seawater, followed by Hg, Pb, Cd and As. The metal complex pollution index in seawater was at a medium level. The most important trace metal pollutant in sediments was Cd, followed by As, Cu, Pb, and Hg. Our pollution assessment suggests that trace metal pollution in Laizhou Bay sediments was at a low level. The potential ecological risk was also low in surface sediment.
基金Supported by the National Natural Science Foundation for Young Scientists of China (No.40806026)the National Special Research Fund for the Non-Profit Sector (No.200805063,201205001)+1 种基金the 908 Project of the State Oceanic Administration, China (No.908-02-02-05)the Basic Scientific Research Operations of the First Institute of Oceanography, State Oceanic Administration (Nos.GY02-2008T28,GY02-2009G22)
文摘Surface sediment samples collected off the Huanghe (Yellow) River mouth during the period 2007-2009 were analyzed for major and trace element concentrations. Concentrations of 16 elements were measured using X-ray fluorescence spectrometry. Results demonstrate that sediment grain size is the dominant factor controlling the spatial variations of elemental concentrations. Correlation and cluster analyses allowed classification of the study area into four geochemical regions: Regions Ⅰ and Ⅲare characterized by high concentrations ofAl2O3, Fe2O3, MgO, Na2O, K2O, Cr, Cu, Mn, Ni, Pb, V, and Zn, and contain fine-grained sediments with mean grain size (Mz)〈22 μm; and; Regions Ⅱ and Ⅳcontain mostly coarse-grained sediments, and are characterized by high concentrations of SiO2, Na2O, and Zr. The sediment entering the sea from the Huanghe River and its tributaries is enriched in Ca. Thus, the Ca/Al ratio was used as an indicator of the proportion of sediments in the study area that originated from the Huanghe River. Ca/Al ratios decrease from Regions Ⅰ and Ⅱ(located in the nearshore zone of the Huanghe River delta) to Regions Ⅲand Ⅳ(distributed in the offshore zone of the northern Huanghe River delta, southern and southeastern Laizhou Bay area).
文摘A total of 43 sediment samples were collected at Kemaman coast, Terengganu, by using Smith Mclntyre grab. These sediments were analyzed to determine the grain size, sediment texture and metallic trace elements. Lazer diffraction method using PSA (particle size analyzer) was used to determine the grain size and sediment texture. Teflon bomb was used to digest the sediments for metallic trace elements concentration. Results showed that the study area was dominated with sand particles (60.5%) followed by loamy sand (20.9%), sandy clay (16.3%) and silt loam (2.3%). On the other hand, the average concentrations of each metallic trace elements were 0.12 pg/g for Cd; 36.6 lag/g for Cr; 9.51 pg/g for Cu; 11.6 ~tg/g for N: 41.5 ~tg/g for Zn and 29.3/ag/g for Pb. Based on the results, it was found out that coarse sediments showed lower levels of metallic trace elements and higher levels in fine sediments. In addition, enrichment factor was calculated to assess the pollution status of the study area. Based on the calculation, the enrichment of metallic trace elements ranked in the following order: Pb 〉 Cd 〉 Zn 〉 Cu 〉 Ni 〉 Cr. The significant enrichment of Pb and moderate enrichment of Cd and Zn indicated that there are anthropogenic inputs while the rest of the metals can be considered from natural sources although there are effects of anthropogenic inputs in some sampling location.
基金the National Natural Science Foundation of China (No. 41306053)the Open Fund of the Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences (Nos. MGE 2015KG04 and MGE2015KG01)+2 种基金the Open Fund of the Key Laboratory of Submarine Geosciences, State Oceanic Administration, People’s Republic of China (No. KSLG 1503)the Special Fund for the Taishan Scholar Program of Shandong Province (No. ts201511061)The authors would like to thank the crews of the COMRA cruises (DY115-22 and DY115-26)
文摘Sediment samples obtained from the South Mid-Atlantic Ridge were analyzed for the major and trace elements by inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. Results revealed that the contents of elements(e.g., Fe, Mn, Cu, Zn, V, Co) were high in samples 22V-TVG10 and 26V-TVG05 from the sites near the hydrothermal areas, and low in sample 22V-TVG14, which was collected far from the hydrothermal areas. The contents of Ca, Sr and Ba in the samples showed opposite trends. A positive correlation between the concentrations of metallic elements(Cu, Zn, Co, Ni, Pb, V) and Fe in the samples were observed. These results are consistent with chemical evolution of the dispersing hydrothermal plume.
文摘Minor and trace elements composition of bottom sediments from the bay of Asunci6n on the Paraguay River have been investigated by XRF (X-ray fluorescence) techniques to determine their correlation as well as provenance. The analysis of complex spectra was performed by the AXIL software and the quantitative analysis by the QAES (quantitative analysis of environmental samples ) software. Analyzed trace elements were the refractory elements Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Zr, Th and others with high field stabilization energy as Cr, Ni, Cu, together with Zn, As, Cd, Pb. Minor elements were Ti, Mn, Fe which are often to the above refractories related. According to their normalized spidergrams, two sets of sediments can be differentiated. Those that show LREE (light rare earth elements) enrichment, negative Nb and Ti anomalies and no spike at Zr and those that have spidergrams very alike, with strong negative anomalies at Nb, Nd and Ti whereas a of Fe versus the refractory elements except Fe-Zr in which correlation seem to be low. positive spike at Zr. In both set, there are strong correlations is negative. Potential hazards of toxic elements in sediments