针对情景记忆算法中记忆池中的样本利用率低的问题,提出了一种基于情景记忆和值函数分解框架相结合的合作型多智能体强化学习算法,即情景记忆值分解(episodic memory value decomposition,EMVD)算法。EMVD算法在情景记忆部分以时间差分...针对情景记忆算法中记忆池中的样本利用率低的问题,提出了一种基于情景记忆和值函数分解框架相结合的合作型多智能体强化学习算法,即情景记忆值分解(episodic memory value decomposition,EMVD)算法。EMVD算法在情景记忆部分以时间差分误差平方为依据来更新记忆池,使记忆池中一直保留对学习效果提升更重要的情景记忆样本,并将情景记忆算法与神经网络相结合,提高了算法的收敛速度。为了将EMVD算法应用于机器人协作运输任务中,设定机器人和运输目标的位置为状态,并且设计了回报函数。仿真结果表明,EMVD算法可以探索出机器人协作运输任务的最优策略,提高了算法的收敛速度。展开更多
文摘针对情景记忆算法中记忆池中的样本利用率低的问题,提出了一种基于情景记忆和值函数分解框架相结合的合作型多智能体强化学习算法,即情景记忆值分解(episodic memory value decomposition,EMVD)算法。EMVD算法在情景记忆部分以时间差分误差平方为依据来更新记忆池,使记忆池中一直保留对学习效果提升更重要的情景记忆样本,并将情景记忆算法与神经网络相结合,提高了算法的收敛速度。为了将EMVD算法应用于机器人协作运输任务中,设定机器人和运输目标的位置为状态,并且设计了回报函数。仿真结果表明,EMVD算法可以探索出机器人协作运输任务的最优策略,提高了算法的收敛速度。