嵌入式设备中部署深度学习检测模型往往面临算力不足的问题,而感兴趣区域(ROI)提取可作为一种高效的性能优化手段。文章提出一种基于HSV(Hue,Saturation,Value)色彩空间模型的ROI提取的方法,将检测目标的像素信息转化到HSV色彩空间,在色...嵌入式设备中部署深度学习检测模型往往面临算力不足的问题,而感兴趣区域(ROI)提取可作为一种高效的性能优化手段。文章提出一种基于HSV(Hue,Saturation,Value)色彩空间模型的ROI提取的方法,将检测目标的像素信息转化到HSV色彩空间,在色相-饱和度(H-S)平面引入DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,精确定位目标的主色彩像素在H-S平面上的分布位置,同时过滤杂乱色彩,然后通过Quickhull(快壳)凸包算法,从散点数据中拟合出主色彩的精确分布范围。根据获取的主色彩范围对像素进行遍历,可以根据色彩信息有效地提取ROI。实验结果表明,经过该方法优化后的Faster R-CNN(Faster Regions with Convolutional Neural Networks)算法,较原模型减少了57.08%的平均推理耗时,同时精确率提升了0.9百分点。这对于嵌入式设备中进行实时目标检测具有重要的现实意义。展开更多
在工业生产中,待抓取物体往往具有种类众多、摆放位置杂乱、形状不规则等特点,使得难以准确获取物体抓取位姿。针对以上问题,提出一种基于深度学习的两阶段抓取位姿估计方法。第1阶段,提出一种基于YOLOv4(you only look once version4)...在工业生产中,待抓取物体往往具有种类众多、摆放位置杂乱、形状不规则等特点,使得难以准确获取物体抓取位姿。针对以上问题,提出一种基于深度学习的两阶段抓取位姿估计方法。第1阶段,提出一种基于YOLOv4(you only look once version4)改进的轻量级旋转目标检测算法,提高目标的检测速度和检测精度。首先,使用轻量化网络GhostNet和深度可分离卷积对原始网络进行重构,降低整个模型参数。然后,在颈部网络中增加自适应空间特征融合结构和无参注意力模块,提高对感兴趣区域的定位精度;最后,使用近似倾斜交并比(skew intersection over union,SkewIoU)损失解决角度的周期性问题。第2阶段,制作与原始图片尺寸一样的掩膜提取感兴趣区域;同时,提出一种改进的DeepLabV3+算法,用以检测感兴趣区域中物体的抓取位姿。实验结果表明,改进后的YOLOv4网络检测精度达到92.5%,改进的DeepLabV3+算法在Cornell抓取数据集上的图像拆分和对象拆分精度分别达到94.6%,92.4%,且能准确检测出物体的抓取位姿。展开更多
传统的功能连接网络模型只提取功能磁共振成像(functional Magnetic Resonance Imaging,fMRI)感兴趣区域(Regions Of Interest,ROIs)的时域特征,用于阿尔茨海默症(Alzheimer's Disease,AD)分类。该模型忽略了ROIs的空域特征,例如脑...传统的功能连接网络模型只提取功能磁共振成像(functional Magnetic Resonance Imaging,fMRI)感兴趣区域(Regions Of Interest,ROIs)的时域特征,用于阿尔茨海默症(Alzheimer's Disease,AD)分类。该模型忽略了ROIs的空域特征,例如脑区之间的两两相关性。不完整的时空特征直接影响阿尔茨海默症、晚期认知障碍(late Mild Cognitive Impairment,lMCI)、早期认知障碍(early Mild Cognitive Impairment,eMCI)和健康对照(Healthy Controls,HC)分类任务的精确度。提出使用动态相关系数核(称为DC-kernel)对空域特征进行动态获取,并与时域特征进行特征融合。实验结果表明,在AD、lMCI、eMCI和HC四分类任务中,较传统阿尔茨海默症的准确率有提高,为其它脑疾病的分类任务提供了一种新的思路。展开更多
文摘嵌入式设备中部署深度学习检测模型往往面临算力不足的问题,而感兴趣区域(ROI)提取可作为一种高效的性能优化手段。文章提出一种基于HSV(Hue,Saturation,Value)色彩空间模型的ROI提取的方法,将检测目标的像素信息转化到HSV色彩空间,在色相-饱和度(H-S)平面引入DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,精确定位目标的主色彩像素在H-S平面上的分布位置,同时过滤杂乱色彩,然后通过Quickhull(快壳)凸包算法,从散点数据中拟合出主色彩的精确分布范围。根据获取的主色彩范围对像素进行遍历,可以根据色彩信息有效地提取ROI。实验结果表明,经过该方法优化后的Faster R-CNN(Faster Regions with Convolutional Neural Networks)算法,较原模型减少了57.08%的平均推理耗时,同时精确率提升了0.9百分点。这对于嵌入式设备中进行实时目标检测具有重要的现实意义。
文摘在工业生产中,待抓取物体往往具有种类众多、摆放位置杂乱、形状不规则等特点,使得难以准确获取物体抓取位姿。针对以上问题,提出一种基于深度学习的两阶段抓取位姿估计方法。第1阶段,提出一种基于YOLOv4(you only look once version4)改进的轻量级旋转目标检测算法,提高目标的检测速度和检测精度。首先,使用轻量化网络GhostNet和深度可分离卷积对原始网络进行重构,降低整个模型参数。然后,在颈部网络中增加自适应空间特征融合结构和无参注意力模块,提高对感兴趣区域的定位精度;最后,使用近似倾斜交并比(skew intersection over union,SkewIoU)损失解决角度的周期性问题。第2阶段,制作与原始图片尺寸一样的掩膜提取感兴趣区域;同时,提出一种改进的DeepLabV3+算法,用以检测感兴趣区域中物体的抓取位姿。实验结果表明,改进后的YOLOv4网络检测精度达到92.5%,改进的DeepLabV3+算法在Cornell抓取数据集上的图像拆分和对象拆分精度分别达到94.6%,92.4%,且能准确检测出物体的抓取位姿。