Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obta...Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obtained from the enzymatic hydrolysis of cellulose.Under the operation conditions of pretreatment pressure 15 MPa,temperature 180 ℃ and time 1 h,the optimal sugar yield of 77.8℅ was obtained.Scanning electron microscopy(SEM) and chemical composition analysis were applied to the pretreated corn stover.The results showed that the surface morphology and microscopic structure of pretreated corn stover were greatly changed.After the pretreatment,the contents of hemicellulose and lignin were reduced obviously.Thus more cellulose was exposed,increasing the sugar yield.展开更多
Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation.Magnetite (Fe3O4) was selected as the oxygen carrier.Shenhua coal (Inner Mongolia,China),straw coke and natural coke were ...Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation.Magnetite (Fe3O4) was selected as the oxygen carrier.Shenhua coal (Inner Mongolia,China),straw coke and natural coke were used as fuels for this study.Influences of operation temperatures,coal to Fe3O4 mass ratios,and different kinds of fuels on the reduction characteristics of the oxygen carrier were investigated using an atmosphere thermogravimetric analyzer (TGA).Scanning electron microscopy (SEM) was used to analyse the characteristic of the solid residues.Experimental results shown that the reaction between the coal and the oxygen carrier become strong at a temperature of higher than 800℃.As the operation temperature rises,the reduction conversion rate increases.At the temperatures of 850oС,900℃,and 950℃,the reduction conversion rates were 37.1%,46.5%,and 54.1% respectively.However,SEM images show that at the temperature of higher than 950℃,the iron oxides become melted and sintered.The possible operation temperature should be kept around 900℃.When the mass ratios of coal to Fe3O4 were 5/95,10/90,15/85,and 20/80,the reduction conversion rates were 29.5%,40.8%,46.5%,and 46.6% respectively.With the increase of coal,the conversion rate goes up.But there exist an optimal ratio around 15/85.Comparisons based on different kinds of fuels show that the solid fuel with a higher volatile and a more developed pore structure is conducive to the reduction reactivity of the oxygen carrier.展开更多
文摘Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obtained from the enzymatic hydrolysis of cellulose.Under the operation conditions of pretreatment pressure 15 MPa,temperature 180 ℃ and time 1 h,the optimal sugar yield of 77.8℅ was obtained.Scanning electron microscopy(SEM) and chemical composition analysis were applied to the pretreated corn stover.The results showed that the surface morphology and microscopic structure of pretreated corn stover were greatly changed.After the pretreatment,the contents of hemicellulose and lignin were reduced obviously.Thus more cellulose was exposed,increasing the sugar yield.
基金the National Natural Science Foundation of China (50776018)the Special Fund of the National Priority Basic Research of China (2007CB 210101) for the financial support of this project
文摘Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation.Magnetite (Fe3O4) was selected as the oxygen carrier.Shenhua coal (Inner Mongolia,China),straw coke and natural coke were used as fuels for this study.Influences of operation temperatures,coal to Fe3O4 mass ratios,and different kinds of fuels on the reduction characteristics of the oxygen carrier were investigated using an atmosphere thermogravimetric analyzer (TGA).Scanning electron microscopy (SEM) was used to analyse the characteristic of the solid residues.Experimental results shown that the reaction between the coal and the oxygen carrier become strong at a temperature of higher than 800℃.As the operation temperature rises,the reduction conversion rate increases.At the temperatures of 850oС,900℃,and 950℃,the reduction conversion rates were 37.1%,46.5%,and 54.1% respectively.However,SEM images show that at the temperature of higher than 950℃,the iron oxides become melted and sintered.The possible operation temperature should be kept around 900℃.When the mass ratios of coal to Fe3O4 were 5/95,10/90,15/85,and 20/80,the reduction conversion rates were 29.5%,40.8%,46.5%,and 46.6% respectively.With the increase of coal,the conversion rate goes up.But there exist an optimal ratio around 15/85.Comparisons based on different kinds of fuels show that the solid fuel with a higher volatile and a more developed pore structure is conducive to the reduction reactivity of the oxygen carrier.