为了提升驱油用聚合物在苛刻油藏环境中的耐温与抗盐性,设计合成了一种以多元胺-丙烯酸甲酯为聚合前体,具有超支化结构的聚酰胺-胺类单体,并在此基础上合成了一种长效抗剪切聚合物(LSRP)。考查了聚合单体浓度、引发温度、聚合时间、引...为了提升驱油用聚合物在苛刻油藏环境中的耐温与抗盐性,设计合成了一种以多元胺-丙烯酸甲酯为聚合前体,具有超支化结构的聚酰胺-胺类单体,并在此基础上合成了一种长效抗剪切聚合物(LSRP)。考查了聚合单体浓度、引发温度、聚合时间、引发剂组成和加量及水解度等因素对LSRP溶液黏度的影响,采用FTIR和1HNMR表征了单体及聚合物结构,对聚合物增黏、抗剪切、抗盐、注入性及驱油性能进行了评价。结果表明:聚合物LSRP具有较好的增黏能力、抗剪切性和稳定性,当原油黏度70~300 m Pa·s时,室内驱油实验采收率较水驱增加20%以上,矿场试验注入后期压力平稳上升。展开更多
目的比较两种软衬硅橡胶在热固化和室温固化条件下,其与聚甲基丙烯酸甲酯(PMMA)的粘接强度。方法水浴加热法制得50 mm×10 mm×3 mm PMMA试片48片,并随机分成4组。以Ufi Gel P(UGP)为软衬材料,制作热固化组(A1组)和室温固化组(A...目的比较两种软衬硅橡胶在热固化和室温固化条件下,其与聚甲基丙烯酸甲酯(PMMA)的粘接强度。方法水浴加热法制得50 mm×10 mm×3 mm PMMA试片48片,并随机分成4组。以Ufi Gel P(UGP)为软衬材料,制作热固化组(A1组)和室温固化组(A2组)试件。以Silagum-Comfort(SLC)为软衬材料,制作热固化组(B1组)和室温固化组(B2组)试件。每组试件各6个。采用电子万能材料试验机对试件进行抗剪切强度测试,并在光学显微镜、扫描电子显微镜(SEM)下观察粘接界面、固化后软衬硅橡胶和打磨后PMMA的表面形态。结果 A1、A2、B1、B2组的抗剪切强度分别为(2.39±0.24)、(1.74±0.27)、(3.09±0.26)、(2.21±0.29)MPa。A1与A2、B1与B2、A1与B1、A2与B2组间的差异均有统计学意义(P<0.05)。光学显微镜和SEM下可见,固化后UGP体部有大量的气泡,SLC无气泡;PMMA表面较为粗糙;各组粘接界面均连续、均匀、密实,A2、B2组粘接界面有须状微突起物。结论 UGP、SLC与PMMA的抗剪切强度均达到了0.44 MPa的临床最低使用标准;UGP与PMMA的抗剪切强度高于SLC与PMMA;热固化方式获得的抗剪切强度高于室温固化方式。展开更多
文摘为了提升驱油用聚合物在苛刻油藏环境中的耐温与抗盐性,设计合成了一种以多元胺-丙烯酸甲酯为聚合前体,具有超支化结构的聚酰胺-胺类单体,并在此基础上合成了一种长效抗剪切聚合物(LSRP)。考查了聚合单体浓度、引发温度、聚合时间、引发剂组成和加量及水解度等因素对LSRP溶液黏度的影响,采用FTIR和1HNMR表征了单体及聚合物结构,对聚合物增黏、抗剪切、抗盐、注入性及驱油性能进行了评价。结果表明:聚合物LSRP具有较好的增黏能力、抗剪切性和稳定性,当原油黏度70~300 m Pa·s时,室内驱油实验采收率较水驱增加20%以上,矿场试验注入后期压力平稳上升。
文摘目的比较两种软衬硅橡胶在热固化和室温固化条件下,其与聚甲基丙烯酸甲酯(PMMA)的粘接强度。方法水浴加热法制得50 mm×10 mm×3 mm PMMA试片48片,并随机分成4组。以Ufi Gel P(UGP)为软衬材料,制作热固化组(A1组)和室温固化组(A2组)试件。以Silagum-Comfort(SLC)为软衬材料,制作热固化组(B1组)和室温固化组(B2组)试件。每组试件各6个。采用电子万能材料试验机对试件进行抗剪切强度测试,并在光学显微镜、扫描电子显微镜(SEM)下观察粘接界面、固化后软衬硅橡胶和打磨后PMMA的表面形态。结果 A1、A2、B1、B2组的抗剪切强度分别为(2.39±0.24)、(1.74±0.27)、(3.09±0.26)、(2.21±0.29)MPa。A1与A2、B1与B2、A1与B1、A2与B2组间的差异均有统计学意义(P<0.05)。光学显微镜和SEM下可见,固化后UGP体部有大量的气泡,SLC无气泡;PMMA表面较为粗糙;各组粘接界面均连续、均匀、密实,A2、B2组粘接界面有须状微突起物。结论 UGP、SLC与PMMA的抗剪切强度均达到了0.44 MPa的临床最低使用标准;UGP与PMMA的抗剪切强度高于SLC与PMMA;热固化方式获得的抗剪切强度高于室温固化方式。