A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high st...A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high stretchable and super-sensitive strain sensors, the ternary composite fiber materials’ interaction, percolation behaviors and mechanism were systematically explored. The resultant SCGFs-based strain sensors simultaneously exhibited high sensitivity, superior stretchability(with a gauge factor of 5,467 under 600% deformation) and excellent durability under different test conditions due to excellent flexibility of SBS, the synergistic effect of hybrid conductive nanofibers and the strong π-π interaction. Besides, the conductive networks in SBS matrix were greatly affected by the mass ratio of CNTs and FLG, and thus the piezoresistive performances of the strain sensors could be controlled by changing the content of hybrid conductive fillers. Especially, the SCGFs with 0.30 wt.%CNTs(equal to their percolation threshold 0.30 wt.%) and 2.7 wt.% FLG demonstrated the highest sensitivity owing to the bridge effect of FLG between adjacent CNTs. Whereas, the SCGFs with 1.0 wt.% CNTs(higher than their percolation threshold) and 2.0 wt.% FLG showed the maximum strain detection range(600%) due to the welding connection caused by FLG between the contiguous CNTs. To evaluate the fabricated sensors, the tensile and the cyclic mechanical recovery properties of SCGFs were tested and analyzed. Additionally, a theoretical piezoresistive mechanism of the ternary composite fiber was investigated by the evolution of conductive networks according to tunneling theory.展开更多
The tradeoff between sensitivity and detection range(maximum and minimum stretchability)is a key limitation in strain sensors;to resolve this,we develop an efficient and novel strategy herein to fabricate a highly sen...The tradeoff between sensitivity and detection range(maximum and minimum stretchability)is a key limitation in strain sensors;to resolve this,we develop an efficient and novel strategy herein to fabricate a highly sensitive and stretchable strain sensor inspired by the membrane-shell structure of poultry eggs.The developed sensor comprises a soft and stretchable surface-grafting polypyrrole(s-PPy)film(acting as the membrane)and a brittle Au film(acting as the shell),wherein both films complement each other at the electrical and mechanical levels.Au forms cracks under strain contributing to its high sensitivity and low detection limit,and s-PPy can bridge Au cracks and increase stretchability which has not been used in strain sensors before.The surface-grafting strategy not only enhances interface adhesion but also tunes the brittle property of native PPy to render it stretchable.Utilizing the synergetic effect of the membrane-shell complementary structure,the strain sensors achieve ultrahigh sensitivity(>10^(7)),large stretchability(100%),and an ultralow detection limit(0.1%),demonstrating significant progress in the field of strain sensors.The membrane-shell(Au/s-PPy)-structured strain sensor can successfully detect finger motion,wrist rotation,airflow fluctuation,and voice vibration;these movements produce strain in the range of subtle to marked deformations.Results evidence the ultrahigh performance and bright application prospects of the developed strain sensors.展开更多
Wearable and stretchable physical sensors that can conformally contact on the surface of organs or skin provide a new opportunity for human-activity monitoring and personal healthcare. Particularly, various attempts h...Wearable and stretchable physical sensors that can conformally contact on the surface of organs or skin provide a new opportunity for human-activity monitoring and personal healthcare. Particularly, various attempts have been made in exploiting wearable and conformal sensors for ther- mal characterization of human skin. In this respect, skin- mounted thermochromic films show great capabilities in body temperature sensing. Thermochromic temperature sensors are attractive because of their easy signal analysis and optical recording, such as color transition and fluorescence emission change upon thermal stimuli. Here, desirable mechanical properties that match epidermis are obtained by physical crosslinking of polydiacetylene (PDA) and transparent elas- tomeric polydimethylsiloxane (PDMS) networks. The result- ing PDA fdm displayed thermochromic and thermo- fluorescent transition temperature in the range of 25-85℃, with stretchability up to 300% and a skin-like Young's mod- ulus of -230 kPa. This easy signal-handling provides excellent references for further design of convenient noninvasive sen- sing systems.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (2232018D3-03 and 2232018A3-01)the Program for Changjiang Scholars and Innovative Research Team in University (IRT16R13)+2 种基金the National Natural Science Foundation of China (51603033)the Science and Technology Commission of Shanghai Municipality (16JC1400700)the Innovation Program of Shanghai Municipal Education Commission (2017-01-0700-03-E00055)
文摘A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high stretchable and super-sensitive strain sensors, the ternary composite fiber materials’ interaction, percolation behaviors and mechanism were systematically explored. The resultant SCGFs-based strain sensors simultaneously exhibited high sensitivity, superior stretchability(with a gauge factor of 5,467 under 600% deformation) and excellent durability under different test conditions due to excellent flexibility of SBS, the synergistic effect of hybrid conductive nanofibers and the strong π-π interaction. Besides, the conductive networks in SBS matrix were greatly affected by the mass ratio of CNTs and FLG, and thus the piezoresistive performances of the strain sensors could be controlled by changing the content of hybrid conductive fillers. Especially, the SCGFs with 0.30 wt.%CNTs(equal to their percolation threshold 0.30 wt.%) and 2.7 wt.% FLG demonstrated the highest sensitivity owing to the bridge effect of FLG between adjacent CNTs. Whereas, the SCGFs with 1.0 wt.% CNTs(higher than their percolation threshold) and 2.0 wt.% FLG showed the maximum strain detection range(600%) due to the welding connection caused by FLG between the contiguous CNTs. To evaluate the fabricated sensors, the tensile and the cyclic mechanical recovery properties of SCGFs were tested and analyzed. Additionally, a theoretical piezoresistive mechanism of the ternary composite fiber was investigated by the evolution of conductive networks according to tunneling theory.
基金the National Key Research and Development Program(2018YFA0703200 and2016YFB0401100)the National Natural Science Foundation of China(21573277,51503221 and 21905199)+1 种基金Tianjin Natural Science Foundation(19JCJQJC62600 and 194214030036)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDB-SSW-SLH031)。
文摘The tradeoff between sensitivity and detection range(maximum and minimum stretchability)is a key limitation in strain sensors;to resolve this,we develop an efficient and novel strategy herein to fabricate a highly sensitive and stretchable strain sensor inspired by the membrane-shell structure of poultry eggs.The developed sensor comprises a soft and stretchable surface-grafting polypyrrole(s-PPy)film(acting as the membrane)and a brittle Au film(acting as the shell),wherein both films complement each other at the electrical and mechanical levels.Au forms cracks under strain contributing to its high sensitivity and low detection limit,and s-PPy can bridge Au cracks and increase stretchability which has not been used in strain sensors before.The surface-grafting strategy not only enhances interface adhesion but also tunes the brittle property of native PPy to render it stretchable.Utilizing the synergetic effect of the membrane-shell complementary structure,the strain sensors achieve ultrahigh sensitivity(>10^(7)),large stretchability(100%),and an ultralow detection limit(0.1%),demonstrating significant progress in the field of strain sensors.The membrane-shell(Au/s-PPy)-structured strain sensor can successfully detect finger motion,wrist rotation,airflow fluctuation,and voice vibration;these movements produce strain in the range of subtle to marked deformations.Results evidence the ultrahigh performance and bright application prospects of the developed strain sensors.
基金supported by the National Key Research and Development Program of China (2016YFB0700300)the National Natural Science Foundation of China (51503014 and51501008)the State Key Laboratory for Advanced Metals and Materials (2016Z-03)
文摘Wearable and stretchable physical sensors that can conformally contact on the surface of organs or skin provide a new opportunity for human-activity monitoring and personal healthcare. Particularly, various attempts have been made in exploiting wearable and conformal sensors for ther- mal characterization of human skin. In this respect, skin- mounted thermochromic films show great capabilities in body temperature sensing. Thermochromic temperature sensors are attractive because of their easy signal analysis and optical recording, such as color transition and fluorescence emission change upon thermal stimuli. Here, desirable mechanical properties that match epidermis are obtained by physical crosslinking of polydiacetylene (PDA) and transparent elas- tomeric polydimethylsiloxane (PDMS) networks. The result- ing PDA fdm displayed thermochromic and thermo- fluorescent transition temperature in the range of 25-85℃, with stretchability up to 300% and a skin-like Young's mod- ulus of -230 kPa. This easy signal-handling provides excellent references for further design of convenient noninvasive sen- sing systems.