无人机进行红外航拍目标检测在交通、农业和军事等方面有着广泛应用。该领域的主要挑战有目标较小、相互遮挡、非刚体形变大以及红外成像纹理信息少、边缘特征弱等。针对以上问题,基于YOLOv5和结构重参数化优化思想,提出了一种针对航拍...无人机进行红外航拍目标检测在交通、农业和军事等方面有着广泛应用。该领域的主要挑战有目标较小、相互遮挡、非刚体形变大以及红外成像纹理信息少、边缘特征弱等。针对以上问题,基于YOLOv5和结构重参数化优化思想,提出了一种针对航拍场景的目标检测模型Rep-YOLO。首先,在主干网络中引入RepVGG模块,提升模型特征提取能力;在模型推理时对RepVGG模块的多分支进行结构重参数化,减少网络分支和结构复杂度。其次,结合数据特征,改进检测网络颈部的路径聚合网络,提升检测算法在机载平台的精度-速度均衡能力。最后,在两个公开红外数据集进行对比实验,表明该算法的有效性。以南航ComNet航拍数据集为例,统计结果显示主要检测指标各类平均精度(mean Average Precision,mAP)提升5.9%,同时参数量和模型大小分别减少约29.7%和23.2%。另外,对Rep-YOLO在典型机载平台Jetson Nano上进行了模型部署验证,为航拍场景的检测算法改进和实际应用提供了可靠的技术支撑。展开更多
L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正...L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正交投影干扰抑制与单快拍稀疏分解的波达方向(direction of arrival,DOA)估计方法。通过子空间投影抑制DME干扰,然后使用单快拍数据构建伪协方差矩阵,对伪协方差矩阵求高阶幂,之后进行奇异值分解,并利用约束条件求解稀疏解得到期望信号来向的估计值。所提方法使用高阶伪协方差矩阵降低了噪声影响,仅用单快拍就可以准确估计LDACS信号的入射方向。仿真结果表明,改进单快拍高级幂(improved single snapshot high order power,ISS-HOP)L1-SVD算法的估计精度优于ISS-HOP-MUSIC算法。该方法可以有效抑制DME干扰,提高OFDM接收机性能。展开更多
针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据...针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。展开更多
文摘无人机进行红外航拍目标检测在交通、农业和军事等方面有着广泛应用。该领域的主要挑战有目标较小、相互遮挡、非刚体形变大以及红外成像纹理信息少、边缘特征弱等。针对以上问题,基于YOLOv5和结构重参数化优化思想,提出了一种针对航拍场景的目标检测模型Rep-YOLO。首先,在主干网络中引入RepVGG模块,提升模型特征提取能力;在模型推理时对RepVGG模块的多分支进行结构重参数化,减少网络分支和结构复杂度。其次,结合数据特征,改进检测网络颈部的路径聚合网络,提升检测算法在机载平台的精度-速度均衡能力。最后,在两个公开红外数据集进行对比实验,表明该算法的有效性。以南航ComNet航拍数据集为例,统计结果显示主要检测指标各类平均精度(mean Average Precision,mAP)提升5.9%,同时参数量和模型大小分别减少约29.7%和23.2%。另外,对Rep-YOLO在典型机载平台Jetson Nano上进行了模型部署验证,为航拍场景的检测算法改进和实际应用提供了可靠的技术支撑。
文摘L波段数字航空通信系统(L band digital aeronautical communication system,LDACS)是未来航空宽带通信重要的基础设施之一,针对LDACS信号容易受到相邻波道大功率测距仪(distance measuring equipment,DME)信号干扰的问题,提出了联合正交投影干扰抑制与单快拍稀疏分解的波达方向(direction of arrival,DOA)估计方法。通过子空间投影抑制DME干扰,然后使用单快拍数据构建伪协方差矩阵,对伪协方差矩阵求高阶幂,之后进行奇异值分解,并利用约束条件求解稀疏解得到期望信号来向的估计值。所提方法使用高阶伪协方差矩阵降低了噪声影响,仅用单快拍就可以准确估计LDACS信号的入射方向。仿真结果表明,改进单快拍高级幂(improved single snapshot high order power,ISS-HOP)L1-SVD算法的估计精度优于ISS-HOP-MUSIC算法。该方法可以有效抑制DME干扰,提高OFDM接收机性能。
文摘针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。