1
|
耦合拟线性扩散方程组Cauchy问题解的渐近行为 |
刘文涛
李建军
徒君
|
《应用数学》
北大核心
|
2024 |
0 |
|
2
|
一类拟线性薛定谔方程解的存在性 |
周梦云
蓝永艺
|
《集美大学学报(自然科学版)》
CAS
|
2024 |
0 |
|
3
|
一类带扰动项的拟线性薛定谔方程的多解性 |
陈铭超
薛艳昉
|
《数学物理学报(A辑)》
CSCD
北大核心
|
2024 |
0 |
|
4
|
具有非线性信号产生的拟线性两种群趋化模型解的有界性 |
赵楠楠
|
《绵阳师范学院学报》
|
2024 |
0 |
|
5
|
一类拟线性椭圆方程的规范基态解 |
吴毛毛
|
《应用数学进展》
|
2024 |
0 |
|
6
|
一类拟线性Schrodinger方程L^(2)约束解的多重性 |
彭玉碧
杨先勇
|
《云南师范大学学报(自然科学版)》
|
2024 |
0 |
|
7
|
具有一般非线性项的拟线性Choquard方程的基态解 |
杨宁
沈自飞
|
《浙江师范大学学报(自然科学版)》
CAS
|
2023 |
0 |
|
8
|
一类拟线性SchrO¨dinger方程正解的存在性 |
周敏
|
《理论数学》
|
2023 |
0 |
|
9
|
一类拟线性薛定谔方程的多解性 |
薛艳昉
朱新才
|
《数学物理学报(A辑)》
CSCD
北大核心
|
2023 |
0 |
|
10
|
关于多发性硬化症拟线性趋化模型解的全局有界性 |
许璐
辛巧
李亚峰
|
《西北师范大学学报(自然科学版)》
CAS
北大核心
|
2023 |
0 |
|
11
|
含混合项的拟线性Schrodinger方程的正规化基态解 |
归坤明
陶虹杉
杨俊
|
《数学物理学报(A辑)》
CSCD
北大核心
|
2023 |
0 |
|
12
|
超临界拟线性海森堡铁丝链薛定谔方程 |
王继研
程永宽
|
《数学物理学报(A辑)》
CSCD
北大核心
|
2023 |
0 |
|
13
|
基于拟线性Zoeppritz方程叠前反演的煤层顶板岩性及坚硬程度预测 |
张生
关雯元
董银萍
常锁亮
李慧婷
王唯骞
|
《煤矿安全》
CAS
北大核心
|
2023 |
0 |
|
14
|
拟线性微分方程无限区间上正解的存在性 |
唐旭莹
|
《理论数学》
|
2023 |
0 |
|
15
|
带竞争系数的拟线性方程基态解的存在性 |
曾宇娇
胡亭曦
|
《纺织高校基础科学学报》
CAS
|
2023 |
0 |
|
16
|
基于拟线性积分方程法的三维电磁场数值模拟精度分析 |
刘永亮
李桐林
朱成
关振伟
苏晓波
|
《吉林大学学报(地球科学版)》
EI
CAS
CSCD
北大核心
|
2017 |
1
|
|
17
|
一类拟线性椭圆方程正解的存在性 |
郭雅萌
陈林
|
《伊犁师范大学学报(自然科学版)》
|
2023 |
0 |
|
18
|
一类拟线性抛物型系统爆破界估计的新结果(英文) |
马韵新
杨作东
|
《河南师范大学学报(自然科学版)》
CAS
CSCD
|
2004 |
0 |
|
19
|
拟线性方程解的存在性(英文) |
黄毅生
虚成林
|
《应用泛函分析学报》
CSCD
|
2003 |
0 |
|
20
|
Banach空间中线性算子的Tseng-拟线性广义逆 |
郑文晶
马海凤
王玉文
|
《哈尔滨师范大学自然科学学报》
CAS
|
2015 |
0 |
|