基于Ga As单片集成电路工艺,对接收通道的关键元器件低噪声放大器和电调衰减器进行了芯片化设计。采用基于多层高温共烧陶瓷埋线工艺设计的金属化陶瓷外壳,对接收通道进行了微组装。测试结果表明,该S波段接收通道接收动态范围大于60 d B...基于Ga As单片集成电路工艺,对接收通道的关键元器件低噪声放大器和电调衰减器进行了芯片化设计。采用基于多层高温共烧陶瓷埋线工艺设计的金属化陶瓷外壳,对接收通道进行了微组装。测试结果表明,该S波段接收通道接收动态范围大于60 d B,增益大于95 d B,噪声系数小于1.3 d B,本振抑制大于30 d Bc,中频信号的谐波抑制大于30 d Bc。当中频自动增益控制电路起控时,接收通道输出功率稳定在(2±0.5)d Bm。该接收通道采用+5 V供电,工作电流小于250 m A。整个接收通道的尺寸仅为20 mm×13.8 mm×5.75 mm,其性能优异且集成度非常高,小型化优势非常明显。展开更多
针对相控阵雷达多通道一致性问题,基于一维线阵数字波束形成接收机开发应用背景,描述了接收通道幅相一致性对阵列增益、波束指向和天线副瓣等指标的影响,介绍了多接收通道校正的原理和实现方法,给出了详细的理论推导。结合工程实践,提...针对相控阵雷达多通道一致性问题,基于一维线阵数字波束形成接收机开发应用背景,描述了接收通道幅相一致性对阵列增益、波束指向和天线副瓣等指标的影响,介绍了多接收通道校正的原理和实现方法,给出了详细的理论推导。结合工程实践,提出了远场校正与近场校正相结合的方法,并对接收通道校正的详细工作流程做出了说明。应用结果表明,该幅相校正方法幅度和相位校正精度分别优于0.5 d B和5°,可有效地提高数字波束指标。展开更多
文摘基于Ga As单片集成电路工艺,对接收通道的关键元器件低噪声放大器和电调衰减器进行了芯片化设计。采用基于多层高温共烧陶瓷埋线工艺设计的金属化陶瓷外壳,对接收通道进行了微组装。测试结果表明,该S波段接收通道接收动态范围大于60 d B,增益大于95 d B,噪声系数小于1.3 d B,本振抑制大于30 d Bc,中频信号的谐波抑制大于30 d Bc。当中频自动增益控制电路起控时,接收通道输出功率稳定在(2±0.5)d Bm。该接收通道采用+5 V供电,工作电流小于250 m A。整个接收通道的尺寸仅为20 mm×13.8 mm×5.75 mm,其性能优异且集成度非常高,小型化优势非常明显。
文摘针对相控阵雷达多通道一致性问题,基于一维线阵数字波束形成接收机开发应用背景,描述了接收通道幅相一致性对阵列增益、波束指向和天线副瓣等指标的影响,介绍了多接收通道校正的原理和实现方法,给出了详细的理论推导。结合工程实践,提出了远场校正与近场校正相结合的方法,并对接收通道校正的详细工作流程做出了说明。应用结果表明,该幅相校正方法幅度和相位校正精度分别优于0.5 d B和5°,可有效地提高数字波束指标。