文章主要探讨弱恒定电场对铁氮共掺二氧化钛纳米颗粒光催化灭活HL60细胞实验的影响以及其机理。利用细胞计数法、CCK-8法检测、倒置显微镜、活性氧检测和荧光光谱等手段进行了分析研究,结果表明,在无电场作用下,此纳米颗粒光催化灭活HL6...文章主要探讨弱恒定电场对铁氮共掺二氧化钛纳米颗粒光催化灭活HL60细胞实验的影响以及其机理。利用细胞计数法、CCK-8法检测、倒置显微镜、活性氧检测和荧光光谱等手段进行了分析研究,结果表明,在无电场作用下,此纳米颗粒光催化灭活HL60细胞的效率达到75.07%,然而在弱恒定电场的作用下,其效率将提高,在场强为600 m V/mm的电场作用下,其效率可达到80.13%,同时,对细胞膜的损伤程度也更大,产生的活性氧类物质也更多;荧光光谱分析推测,电场可能通过分离光生空穴电子对和提供能量给价带电子跃迁来使更多空穴和电子被利用,进而提高此纳米颗粒的光催化活性。展开更多
In this paper,the combined addition of copper or iron and sulphate ions onto TiO_(2) prepared by a simple sol-gel method is studied for formic acid photocatalytic conversion.A wide structural and morphological charact...In this paper,the combined addition of copper or iron and sulphate ions onto TiO_(2) prepared by a simple sol-gel method is studied for formic acid photocatalytic conversion.A wide structural and morphological characterization of the different photocatalysts was performed by X-ray diffraction(XRD),N_(2)-physisorption for BET surface area measurements,scanning and transmission electronic microscopies(SEM and TEM),UV-Vis diffuse spectroscopy(DRS)and X-ray photoelectron spectroscopy(XPS),in order to correlate the physico-chemical properties of the materials to their photocatalytic efficiencies for formic acid oxidation.Results have shown important differences among the catalysts depending on the metal added.Sulphated TiO_(2)/Cu(1%Cu)was the best photocatalyst obtaining about 100% formic acid conversion in only 5 min.The appropriate physico-chemical features of this photocatalyst,given by the addition of combined copper and sulphate ions,explain its excellence in photocatalytic reaction.展开更多
文摘文章主要探讨弱恒定电场对铁氮共掺二氧化钛纳米颗粒光催化灭活HL60细胞实验的影响以及其机理。利用细胞计数法、CCK-8法检测、倒置显微镜、活性氧检测和荧光光谱等手段进行了分析研究,结果表明,在无电场作用下,此纳米颗粒光催化灭活HL60细胞的效率达到75.07%,然而在弱恒定电场的作用下,其效率将提高,在场强为600 m V/mm的电场作用下,其效率可达到80.13%,同时,对细胞膜的损伤程度也更大,产生的活性氧类物质也更多;荧光光谱分析推测,电场可能通过分离光生空穴电子对和提供能量给价带电子跃迁来使更多空穴和电子被利用,进而提高此纳米颗粒的光催化活性。
文摘In this paper,the combined addition of copper or iron and sulphate ions onto TiO_(2) prepared by a simple sol-gel method is studied for formic acid photocatalytic conversion.A wide structural and morphological characterization of the different photocatalysts was performed by X-ray diffraction(XRD),N_(2)-physisorption for BET surface area measurements,scanning and transmission electronic microscopies(SEM and TEM),UV-Vis diffuse spectroscopy(DRS)and X-ray photoelectron spectroscopy(XPS),in order to correlate the physico-chemical properties of the materials to their photocatalytic efficiencies for formic acid oxidation.Results have shown important differences among the catalysts depending on the metal added.Sulphated TiO_(2)/Cu(1%Cu)was the best photocatalyst obtaining about 100% formic acid conversion in only 5 min.The appropriate physico-chemical features of this photocatalyst,given by the addition of combined copper and sulphate ions,explain its excellence in photocatalytic reaction.